Trees in random graphs

P. Erdős, Z. Palka

Research output: Article

19 Citations (Scopus)

Abstract

We show that for every ε > 0 almost every graph G ε{lunate} G(n, p) is such that if (1+ε{lunate}) log n log d ≤r≤(2-ε{lunate}) log n log d where d = 1 q, then G contains a maximal induced tree of order r.

Original languageEnglish
Pages (from-to)145-150
Number of pages6
JournalDiscrete Mathematics
Volume46
Issue number2
DOIs
Publication statusPublished - 1983

Fingerprint

Random Graphs
Graph in graph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Trees in random graphs. / Erdős, P.; Palka, Z.

In: Discrete Mathematics, Vol. 46, No. 2, 1983, p. 145-150.

Research output: Article

Erdős, P. ; Palka, Z. / Trees in random graphs. In: Discrete Mathematics. 1983 ; Vol. 46, No. 2. pp. 145-150.
@article{1d55fcf40abd4f7f944c0d2e91416c76,
title = "Trees in random graphs",
abstract = "We show that for every ε > 0 almost every graph G ε{lunate} G(n, p) is such that if (1+ε{lunate}) log n log d ≤r≤(2-ε{lunate}) log n log d where d = 1 q, then G contains a maximal induced tree of order r.",
author = "P. Erdős and Z. Palka",
year = "1983",
doi = "10.1016/0012-365X(83)90247-9",
language = "English",
volume = "46",
pages = "145--150",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Trees in random graphs

AU - Erdős, P.

AU - Palka, Z.

PY - 1983

Y1 - 1983

N2 - We show that for every ε > 0 almost every graph G ε{lunate} G(n, p) is such that if (1+ε{lunate}) log n log d ≤r≤(2-ε{lunate}) log n log d where d = 1 q, then G contains a maximal induced tree of order r.

AB - We show that for every ε > 0 almost every graph G ε{lunate} G(n, p) is such that if (1+ε{lunate}) log n log d ≤r≤(2-ε{lunate}) log n log d where d = 1 q, then G contains a maximal induced tree of order r.

UR - http://www.scopus.com/inward/record.url?scp=30244546135&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=30244546135&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(83)90247-9

DO - 10.1016/0012-365X(83)90247-9

M3 - Article

AN - SCOPUS:30244546135

VL - 46

SP - 145

EP - 150

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 2

ER -