Transient etiolation: Protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum)

Research output: Article

27 Citations (Scopus)

Abstract

An accompanying paper reports the accumulation of photoactive protochlorophyllide (Pchlide) in the innermost leaf primordia of buds of many tree species. In this paper, we describe plastid differentiation, changes in pigment concentrations and spectral properties of bud scales and leaf primordia of horse chestnut (Aesculus hippocastanum L.) from January until the end of bud break in April. The bud scales contained plastids with grana, stroma thylakoids characteristic of chloroplasts and large dense bodies within the stroma. In January, proplastids and young chloroplasts were present in the leaf primordia, and the fluorescence spectra of the primordia were similar to those of green leaves except for a minor band at 630 nm, indicative of a protochlorophyll(ide). During bud break, the pigment concentrations of the green bud scales and the outermost leaf primordia increased, and Pchlide forms with emission maxima at 633, 644 and 655 nm accumulated in the middle and innermost leaf primordia. Depending on the position of the leaf primordia within the bud, their plastids and their pigment concentrations varied. Etio-chloroplasts with prolamellar bodies (PLBs) and prothylakoids with developing grana were observed in the innermost leaves. Besides the above-mentioned Pchlide forms, the middle and innnermost leaf primordia contained only a Chl band with an emission maximum at 686 nm. The outermost leaf primordia contained etio-chloroplasts with well-developed grana and small, narrow-type PLBs. These outermost leaves contained only chlorophyll forms like the mature green leaves. No Pchlide accumulation was observed after bud break, indicating that etiolation of the innermost and middle leaves is transient. The Pchlide forms and the plastid types of the primordia in buds grown in nature were similar to those of leaves of dark-germinated seedlings and to those of the leaf primordia of dark-forced buds. We conclude that transient etiolation occurs under natural conditions. The formation of PLBs and etio-chloroplasts and the accumulation of the light-dependent NADPH:protochlorophyllide oxidoreductase are involved in the natural greening process and ontogenesis of young leaf primordia of horse chestnut buds.

Original languageEnglish
Pages (from-to)1087-1096
Number of pages10
JournalTree Physiology
Volume26
Issue number8
DOIs
Publication statusPublished - aug. 2006

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint Dive into the research topics of 'Transient etiolation: Protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum)'. Together they form a unique fingerprint.

  • Cite this