Strong coupling results in the AdS 5 /CF T 4 correspondence from the numerical solution of the quantum spectral curve

Árpád Hegedűs, József Konczer

Research output: Article

11 Citations (Scopus)


In this paper, we solved numerically the Quantum Spectral Curve (QSC) equations corresponding to some twist-2 single trace operators with even spin from the sl(2) sector of AdS5/CFT4 correspondence. We describe all technical details of the numerical method which are necessary to implement it in C++ language. In the S = 2, 4, 6, 8 cases, our numerical results confirm the analytical results, known in the literature for the first 4 coefficients of the strong coupling expansion for the anomalous dimensions of twist-2 operators. In the case of the Konishi operator, due to the high precision of the numerical data we could give numerical predictions to the values of two further coefficients, as well. The strong coupling behaviour of the coefficients ca,n in the power series representation of the Pa-functions is also investigated. Based on our numerical data, in the regime, where the index of the coefficients is much smaller than λ1/4, we conjecture that the coefficients have polynomial index dependence at strong coupling. This allows one to propose a strong coupling series representation for the P-functions being valid far enough from the real short cut. In the paper the qualitative strong coupling behaviour of the P-functions at the branch points is also discussed.

Original languageEnglish
Article number61
JournalJournal of High Energy Physics
Issue number8
Publication statusPublished - aug. 1 2016

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Strong coupling results in the AdS <sub>5</sub> /CF T <sub>4</sub> correspondence from the numerical solution of the quantum spectral curve'. Together they form a unique fingerprint.

  • Cite this