S-process krypton of variable isotopic composition in the Murchison meteorite

Ulrich Ott, Friedrich Begemann, Jongmann Yang, Samuel Epstein

Research output: Article

40 Citations (Scopus)


Current theories on the origin of the chemical elements explain the abundance of medium-heavy and heavy nuclides to he due to the capture by pre-existing lighter nuclides of free neutrons on either a slow timescale (s-process) or a rapid timescale (r-process)1-3. Experimental evidence in support of these theories comes from the analysis of carbonaceous chondrites. In acid-resistant residues of these meteorites a kind of xenon has been found, the isotopic composition of which matches almost perfectly that predicted for s-process xenon4,5. We report data that allow us, for the first time, to derive with reasonable precision the full isotopic spectrum of s-process krypton as well. We show that this s-Kr in a residue from Murchison meteorite did not originate in one single s-process but rather is a mixture of contributions from stellar environments where the density of free neutrons was not the same. The astrophysical conditions under which this krypton has been produced were distinct from those that have been invoked to explain the Solar System s-process abundance. Similar to the 13C-rich carbon component in an aliquot of the same residue6, the s-process Kr from different astrophysical sites has retained its identity during the accumulation and subsequent history of the meteorite.

Original languageEnglish
Pages (from-to)700-702
Number of pages3
Issue number6166
Publication statusPublished - jan. 1 1988

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'S-process krypton of variable isotopic composition in the Murchison meteorite'. Together they form a unique fingerprint.

  • Cite this