Quadrupole effects in 63Cu NMR spectroscopy of copper nanocrystals

K. Tompa, P. Bénki, M. Bokor, G. Lasanda, L. K. Varga, Y. Champion, L. Takács

Research output: Article

Abstract

Quadrupole effects in room-temperature continuous-wave (CW) 63Cu nuclear magnetic resonance (NMR) spectra, "π/2" pulse length shortening and amplitudes of two-pulse generated echoes were investigated on nanocrystalline copper powders produced by cryogenic melting and by ball milling techniques. Systematic measurements on the parent polycrystalline copper and on copper-based copper-palladium dilute alloys on the basis of the same experimental techniques were also made and the results were compared to that of the nanophase samples. Fractions of Cu nuclei contributing to the specific NMR responses and average field gradients coming from noncubic neighborhoods were estimated in all the investigated cases. The satellite and/or central component origins of NMR spectra of the samples are not a priori trivial even in the simplest case. Comparative analysis of CW and pulsed experiments allowed a surprising technological conclusion to be drawn by finding a smaller chemical impurity content inside the nanograins than the value characteristic of the entire sample. The measured decrease of the impurity concentration in the inner region of the copper nanoparticles is the consequence of the applied technologies: cryogenic melting and ball milling. These preparation methods cause grain-boundary segregation and result in a cleaner inside of copper nanoparticles.

Original languageEnglish
Pages (from-to)93-107
Number of pages15
JournalApplied Magnetic Resonance
Volume27
Issue number1-2
DOIs
Publication statusPublished - jan. 1 2004

    Fingerprint

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this