Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism

Tamás Spisák, Viktor Román, Edit Papp, Rita Kedves, Katalin Sághy, Cecília Katalin Csölle, Anita Varga, Dávid Gajári, G. Nyitrai, Zsófia Spisák, Zsigmond Tamás Kincses, György Lévay, Balázs Lendvai, András Czurkó

Research output: Article

Abstract

While cerebellar alterations may play a crucial role in the development of core autism spectrum disorder (ASD) symptoms, their pathophysiology on the function of cerebrocerebellar circuit loops is largely unknown. We combined multimodal MRI (9.4 T) brain assessment of the prenatal rat valproate (VPA) model and correlated immunohistological analysis of the cerebellar Purkinje cell number to address this question. We hypothesized that a suitable functional MRI (fMRI) paradigm might show some altered activity related to disrupted cerebrocerebellar information processing. Two doses of maternal VPA (400 and 600 mg/kg, s.c.) were used. The higher VPA dose induced 3% smaller whole brain volume, the lower dose induced 2% smaller whole brain volume and additionally a focal gray matter density decrease in the cerebellum and brainstem. Increased cortical BOLD responses to whisker stimulation were detected in both VPA groups, but it was more pronounced and extended to cerebellar regions in the 400 mg/kg VPA group. Immunohistological analysis revealed a decreased number of Purkinje cells in both VPA groups. In a detailed analysis, we revealed that the Purkinje cell number interacts with the cerebral BOLD response distinctively in the two VPA groups that highlights atypical function of the cerebrocerebellar circuit loops with potential translational value as an ASD biomarker.

Original languageEnglish
Article number9225
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - dec. 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism'. Together they form a unique fingerprint.

  • Cite this

    Spisák, T., Román, V., Papp, E., Kedves, R., Sághy, K., Csölle, C. K., Varga, A., Gajári, D., Nyitrai, G., Spisák, Z., Kincses, Z. T., Lévay, G., Lendvai, B., & Czurkó, A. (2019). Purkinje cell number-correlated cerebrocerebellar circuit anomaly in the valproate model of autism. Scientific reports, 9(1), [9225]. https://doi.org/10.1038/s41598-019-45667-1