Presence of synchrony-generating hubs in the human epileptic neocortex

Ágnes Kandrács, Katharina T. Hofer, Kinga Tóth, Estilla Z. Tóth, László Entz, Attila G. Bagó, Loránd Erőss, Zsófia Jordán, Gábor Nagy, Dániel Fabó, István Ulbert, Lucia Wittner

Research output: Article

1 Citation (Scopus)

Abstract

Key points: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. Abstract: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.

Original languageEnglish
JournalJournal of Physiology
DOIs
Publication statusAccepted/In press - jan. 1 2019

Fingerprint

Neocortex
Neurons
Epilepsy
Seizures
Interneurons
GABA-A Receptors
Population
Pyramidal Cells
Microelectrodes
Animal Models

ASJC Scopus subject areas

  • Physiology

Cite this

Kandrács, Á., Hofer, K. T., Tóth, K., Tóth, E. Z., Entz, L., Bagó, A. G., ... Wittner, L. (Accepted/In press). Presence of synchrony-generating hubs in the human epileptic neocortex. Journal of Physiology. https://doi.org/10.1113/JP278499

Presence of synchrony-generating hubs in the human epileptic neocortex. / Kandrács, Ágnes; Hofer, Katharina T.; Tóth, Kinga; Tóth, Estilla Z.; Entz, László; Bagó, Attila G.; Erőss, Loránd; Jordán, Zsófia; Nagy, Gábor; Fabó, Dániel; Ulbert, István; Wittner, Lucia.

In: Journal of Physiology, 01.01.2019.

Research output: Article

Kandrács, Á, Hofer, KT, Tóth, K, Tóth, EZ, Entz, L, Bagó, AG, Erőss, L, Jordán, Z, Nagy, G, Fabó, D, Ulbert, I & Wittner, L 2019, 'Presence of synchrony-generating hubs in the human epileptic neocortex', Journal of Physiology. https://doi.org/10.1113/JP278499
Kandrács Á, Hofer KT, Tóth K, Tóth EZ, Entz L, Bagó AG et al. Presence of synchrony-generating hubs in the human epileptic neocortex. Journal of Physiology. 2019 jan. 1. https://doi.org/10.1113/JP278499
Kandrács, Ágnes ; Hofer, Katharina T. ; Tóth, Kinga ; Tóth, Estilla Z. ; Entz, László ; Bagó, Attila G. ; Erőss, Loránd ; Jordán, Zsófia ; Nagy, Gábor ; Fabó, Dániel ; Ulbert, István ; Wittner, Lucia. / Presence of synchrony-generating hubs in the human epileptic neocortex. In: Journal of Physiology. 2019.
@article{5ef875416e5f4fbfa950b1888ce66d29,
title = "Presence of synchrony-generating hubs in the human epileptic neocortex",
abstract = "Key points: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. Abstract: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90{\%} of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.",
keywords = "bicuculline, epilepsy, human, neocortex, synchrony",
author = "{\'A}gnes Kandr{\'a}cs and Hofer, {Katharina T.} and Kinga T{\'o}th and T{\'o}th, {Estilla Z.} and L{\'a}szl{\'o} Entz and Bag{\'o}, {Attila G.} and Lor{\'a}nd Erőss and Zs{\'o}fia Jord{\'a}n and G{\'a}bor Nagy and D{\'a}niel Fab{\'o} and Istv{\'a}n Ulbert and Lucia Wittner",
year = "2019",
month = "1",
day = "1",
doi = "10.1113/JP278499",
language = "English",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Presence of synchrony-generating hubs in the human epileptic neocortex

AU - Kandrács, Ágnes

AU - Hofer, Katharina T.

AU - Tóth, Kinga

AU - Tóth, Estilla Z.

AU - Entz, László

AU - Bagó, Attila G.

AU - Erőss, Loránd

AU - Jordán, Zsófia

AU - Nagy, Gábor

AU - Fabó, Dániel

AU - Ulbert, István

AU - Wittner, Lucia

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Key points: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. Abstract: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.

AB - Key points: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. Abstract: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.

KW - bicuculline

KW - epilepsy

KW - human

KW - neocortex

KW - synchrony

UR - http://www.scopus.com/inward/record.url?scp=85074007474&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074007474&partnerID=8YFLogxK

U2 - 10.1113/JP278499

DO - 10.1113/JP278499

M3 - Article

C2 - 31523807

AN - SCOPUS:85074007474

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

ER -