On additive representation functions of finite sets, I (Variation)

Research output: Article

1 Citation (Scopus)

Abstract

If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

Original languageEnglish
Pages (from-to)201-210
Number of pages10
JournalPeriodica Mathematica Hungarica
Volume66
Issue number2
DOIs
Publication statusPublished - jún. 2013

Fingerprint

Number of Solutions
Modulo
Finite Set
Denote
Class

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

@article{60eff92ef49a4dd094947ae8bb4c9cfa,
title = "On additive representation functions of finite sets, I (Variation)",
abstract = "If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.",
keywords = "additive representation function, variation",
author = "A. S{\'a}rk{\"o}zy",
year = "2013",
month = "6",
doi = "10.1007/s10998-013-8476-6",
language = "English",
volume = "66",
pages = "201--210",
journal = "Periodica Mathematica Hungarica",
issn = "0031-5303",
publisher = "Springer Netherlands",
number = "2",

}

TY - JOUR

T1 - On additive representation functions of finite sets, I (Variation)

AU - Sárközy, A.

PY - 2013/6

Y1 - 2013/6

N2 - If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

AB - If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

KW - additive representation function

KW - variation

UR - http://www.scopus.com/inward/record.url?scp=84881614782&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881614782&partnerID=8YFLogxK

U2 - 10.1007/s10998-013-8476-6

DO - 10.1007/s10998-013-8476-6

M3 - Article

AN - SCOPUS:84881614782

VL - 66

SP - 201

EP - 210

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 2

ER -