### Abstract

If m ∈ ℕ, ℤ_{m} is the additive group of the modulo m residue classes, A ⊂ ℤ_{m} and n ∈ ℤ_{m}, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

Original language | English |
---|---|

Pages (from-to) | 201-210 |

Number of pages | 10 |

Journal | Periodica Mathematica Hungarica |

Volume | 66 |

Issue number | 2 |

DOIs | |

Publication status | Published - jún. 2013 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

**On additive representation functions of finite sets, I (Variation).** / Sárközy, A.

Research output: Article

*Periodica Mathematica Hungarica*, vol. 66, no. 2, pp. 201-210. https://doi.org/10.1007/s10998-013-8476-6

}

TY - JOUR

T1 - On additive representation functions of finite sets, I (Variation)

AU - Sárközy, A.

PY - 2013/6

Y1 - 2013/6

N2 - If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

AB - If m ∈ ℕ, ℤm is the additive group of the modulo m residue classes, A ⊂ ℤm and n ∈ ℤm, then let R(A,n) denote the number of solutions of a+a′ = n with a,a′ ∈ A. The variation, is estimated in terms of the number of a's with a - 1 ∉ A, a ∈ A.

KW - additive representation function

KW - variation

UR - http://www.scopus.com/inward/record.url?scp=84881614782&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881614782&partnerID=8YFLogxK

U2 - 10.1007/s10998-013-8476-6

DO - 10.1007/s10998-013-8476-6

M3 - Article

AN - SCOPUS:84881614782

VL - 66

SP - 201

EP - 210

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 2

ER -