Neurogenic insulin resistance in guinea-pigs with cisplatin-induced neuropathy

Judit Szilvássy, István Sziklai, Réka Sári, József Németh, Barna Peitl, Robert Porszasz, János Lonovics, Zoltán Szilvássy

Research output: Article

6 Citations (Scopus)


The aim of the present work was to study whether neurotoxicity produced by cisplatin modified tissue insulin sensitivity in guinea-pigs. One week after selective sensory denervation of the anterior hepatic plexus by means of perineurial 2% capsaicin treatment, hyperinsulinaemic euglycaemic glucose clamp were performed to estimate insulin sensitivity in male guinea-pigs. The guinea-pigs underwent regional sensory denervation of the anterior hepatic plexus exhibited insulin resistance, whereas systemic capsaicin desensitization increased insulin sensitivity. Intraportal administration of l-nitro-arginine methyl esther (L-NAME decreased, whereas capsaicin increased insulin sensitivity. Neither atropine nor acetylcholine produced any significant effect. In animals with preceding regional capsaicin desensitization, none of the pharmacological maneuvers modified the resulting insulin resistant state. Cisplatin pretreatment induced sensory neuropathy and decreased insulin sensitivity. Insulin sensitivity did not change after either regional or systemic capsaicin desensitization in the cisplatin-treated animals. CGRP 8-37, a nonselective calcitonin gene-related peptide (CGRP) antagonist (50 μg/kg i.v.), significantly increased insulin sensitivity in normal animals but only a tendency to insulin sensitization was seen after cisplatin treatment. Cisplatin treatment, similar to regional capsaicin desensitization of the anterior hepatic plexus, produced a significant decrease in insulin-stimulated uptake of 2-deoxy-d [l-14C] glucose in cardiac and gastrocnemius muscle with no effect on percentage suppression of endogenous glucose production by hyperinsulinaemia. We conclude that the majority of cisplatin-induced insulin resistance is related to functional deterioration of the hepatic insulin sensitizing substance (HISS) mechanism.

Original languageEnglish
Pages (from-to)217-225
Number of pages9
JournalEuropean Journal of Pharmacology
Issue number1-3
Publication statusPublished - febr. 15 2006

ASJC Scopus subject areas

  • Pharmacology

Fingerprint Dive into the research topics of 'Neurogenic insulin resistance in guinea-pigs with cisplatin-induced neuropathy'. Together they form a unique fingerprint.

  • Cite this