Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri)

H. Ábrahám, B. Czéh, E. Fuchs, L. Séress

Research output: Article

10 Citations (Scopus)

Abstract

Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript- immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.

Original languageEnglish
Pages (from-to)231-240
Number of pages10
JournalNeuroscience
Volume136
Issue number1
DOIs
Publication statusPublished - 2005

Fingerprint

Tupaia
Tupaiidae
Pyramidal Cells
Amphetamine
Cocaine
Primates
Hippocampus
Peptides
Callithrix
Haplorhini
Dentate Gyrus
Macaca mulatta
Neurons
Rodentia

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{84973df2a0654a718a24e61e0430d2aa,
title = "Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri)",
abstract = "Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript- immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.",
keywords = "Dentate gyrus, Hilus, Marmoset monkey, Psychostimulants, Rhesus monkey",
author = "H. {\'A}brah{\'a}m and B. Cz{\'e}h and E. Fuchs and L. S{\'e}ress",
year = "2005",
doi = "10.1016/j.neuroscience.2005.07.030",
language = "English",
volume = "136",
pages = "231--240",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri)

AU - Ábrahám, H.

AU - Czéh, B.

AU - Fuchs, E.

AU - Séress, L.

PY - 2005

Y1 - 2005

N2 - Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript- immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.

AB - Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript- immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.

KW - Dentate gyrus

KW - Hilus

KW - Marmoset monkey

KW - Psychostimulants

KW - Rhesus monkey

UR - http://www.scopus.com/inward/record.url?scp=26944481548&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=26944481548&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2005.07.030

DO - 10.1016/j.neuroscience.2005.07.030

M3 - Article

C2 - 16181735

AN - SCOPUS:26944481548

VL - 136

SP - 231

EP - 240

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 1

ER -