Maximal cocliques in the Kneser graph on point-plane flags in PG (4, q)

A. Blokhuis, A. E. Brouwer, T. Szőnyi

Research output: Article

2 Citations (Scopus)

Abstract

We determine the maximal cocliques of size ≥5q2 + 5q + 2 in the Kneser graph on point-plane flags in PG (4, q) The maximal size of a coclique in this graph is (q2 + q + 1) (q3 + q2 + q + 1).

Original languageEnglish
Pages (from-to)95-104
Number of pages10
JournalEuropean Journal of Combinatorics
Volume35
DOIs
Publication statusPublished - jan. 2014

Fingerprint

Kneser Graph
Graph in graph theory

ASJC Scopus subject areas

  • Geometry and Topology
  • Theoretical Computer Science
  • Computational Theory and Mathematics

Cite this

Maximal cocliques in the Kneser graph on point-plane flags in PG (4, q). / Blokhuis, A.; Brouwer, A. E.; Szőnyi, T.

In: European Journal of Combinatorics, Vol. 35, 01.2014, p. 95-104.

Research output: Article

@article{fecf02ec04a64efdb74450f5874dede1,
title = "Maximal cocliques in the Kneser graph on point-plane flags in PG (4, q)",
abstract = "We determine the maximal cocliques of size ≥5q2 + 5q + 2 in the Kneser graph on point-plane flags in PG (4, q) The maximal size of a coclique in this graph is (q2 + q + 1) (q3 + q2 + q + 1).",
author = "A. Blokhuis and Brouwer, {A. E.} and T. Szőnyi",
year = "2014",
month = "1",
doi = "10.1016/j.ejc.2013.06.005",
language = "English",
volume = "35",
pages = "95--104",
journal = "European Journal of Combinatorics",
issn = "0195-6698",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Maximal cocliques in the Kneser graph on point-plane flags in PG (4, q)

AU - Blokhuis, A.

AU - Brouwer, A. E.

AU - Szőnyi, T.

PY - 2014/1

Y1 - 2014/1

N2 - We determine the maximal cocliques of size ≥5q2 + 5q + 2 in the Kneser graph on point-plane flags in PG (4, q) The maximal size of a coclique in this graph is (q2 + q + 1) (q3 + q2 + q + 1).

AB - We determine the maximal cocliques of size ≥5q2 + 5q + 2 in the Kneser graph on point-plane flags in PG (4, q) The maximal size of a coclique in this graph is (q2 + q + 1) (q3 + q2 + q + 1).

UR - http://www.scopus.com/inward/record.url?scp=84882735692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84882735692&partnerID=8YFLogxK

U2 - 10.1016/j.ejc.2013.06.005

DO - 10.1016/j.ejc.2013.06.005

M3 - Article

AN - SCOPUS:84882735692

VL - 35

SP - 95

EP - 104

JO - European Journal of Combinatorics

JF - European Journal of Combinatorics

SN - 0195-6698

ER -