Mass spectrometric analysis of activity-dependent changes of neuropeptide profile in the snail, Helix pomatia

Z. Pirger, A. Lubics, D. Reglodi, Z. Laszlo, L. Mark, T. Kiss

Research output: Article

14 Citations (Scopus)

Abstract

Terrestrial snails are able to transform themselves into inactivity ceasing their behavioral activity under unfavorable environmental conditions. In the present study, we report on the activity-dependent changes of the peptide and/or polypeptide profile in the brain and hemolymph of the snail, Helix pomatia, using MALDI TOF and quadrupole mass spectrometry. The present data indicate that the snails respond to low temperature by increasing or decreasing the output of selected peptides. Average mass spectra of the brain and hemolymph revealed numerous peaks predominantly present during the active state (19 and 10 peptides/polypeptides, respectively), while others were observed only during hibernation (11 and 13). However, there were peptides and/or polypeptides or their fragments present irrespective of the activity states (49 and 18). The intensity of fourteen peaks that correspond to previously identified neuropeptides varied in the brain of active snails compared to those of hibernating animals. Among those the intensity of eight peptides increased significantly in active animals while in hibernated animals the intensity of another six peptides increased significantly. A new peptide or peptide fragment at m/z 1110.7 was identified in a brain of the snail with the following suggested amino acid sequence: GSGASGSMPATTS. This peptide was found to be more abundant in active animals because the intensity of the peptide was significantly higher compared to hibernating animals. In summary, our results revealed substantial differences in the peptide/polypeptide profile of the brain and hemolymph of active and hibernating snails suggesting a possible contribution of peptides in the process of hibernation.

Original languageEnglish
Pages (from-to)475-483
Number of pages9
JournalNeuropeptides
Volume44
Issue number6
DOIs
Publication statusPublished - dec. 1 2010

    Fingerprint

ASJC Scopus subject areas

  • Endocrinology
  • Neurology
  • Endocrine and Autonomic Systems
  • Cellular and Molecular Neuroscience

Cite this