Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons

Min Wu, T. Hajszán, Changqing Xu, Csaba Leranth, Meenakshi Alreja

Research output: Article

27 Citations (Scopus)

Abstract

Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions, group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5- dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double- immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.

Original languageEnglish
Pages (from-to)1216-1225
Number of pages10
JournalJournal of Neurophysiology
Volume92
Issue number2
DOIs
Publication statusPublished - aug. 2004

Fingerprint

Metabotropic Glutamate Receptors
Cholinergic Neurons
Acetylcholine
Neurodegenerative Diseases
alpha-methyl-4-carboxyphenylglycine
Hippocampus
Vesicular Glutamate Transport Protein 2
Excitatory Amino Acid Agonists
GABAergic Neurons
Patch-Clamp Techniques
Carboxylic Acids
Axons
Esters
Learning
Pharmacology
Electrons
Neurons
Light
Brain

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons. / Wu, Min; Hajszán, T.; Xu, Changqing; Leranth, Csaba; Alreja, Meenakshi.

In: Journal of Neurophysiology, Vol. 92, No. 2, 08.2004, p. 1216-1225.

Research output: Article

@article{00ac90cf6eb9422b980bb09ca6f4efe6,
title = "Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons",
abstract = "Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions, group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5- dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100{\%} of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double- immunolabeling studies, 74{\%} of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35{\%} co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.",
author = "Min Wu and T. Hajsz{\'a}n and Changqing Xu and Csaba Leranth and Meenakshi Alreja",
year = "2004",
month = "8",
doi = "10.1152/jn.00180.2004",
language = "English",
volume = "92",
pages = "1216--1225",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons

AU - Wu, Min

AU - Hajszán, T.

AU - Xu, Changqing

AU - Leranth, Csaba

AU - Alreja, Meenakshi

PY - 2004/8

Y1 - 2004/8

N2 - Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions, group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5- dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double- immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.

AB - Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions, group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5- dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double- immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.

UR - http://www.scopus.com/inward/record.url?scp=3142666106&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3142666106&partnerID=8YFLogxK

U2 - 10.1152/jn.00180.2004

DO - 10.1152/jn.00180.2004

M3 - Article

C2 - 15044519

AN - SCOPUS:3142666106

VL - 92

SP - 1216

EP - 1225

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 2

ER -