### Abstract

We present a generalization of Wigner's unitary-antiunitary theorem for pairs of ray transformations. As a particular case, we get a new Wigner-type theorem for non-Hermitian indefinite inner product spaces.

Original language | English |
---|---|

Pages (from-to) | 785-791 |

Number of pages | 7 |

Journal | Communications in Mathematical Physics |

Volume | 210 |

Issue number | 3 |

Publication status | Published - ápr. 2000 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematical Physics
- Physics and Astronomy(all)
- Statistical and Nonlinear Physics

### Cite this

**Generalization of Wigner's unitary-antiunitary theorem for indefinite inner product spaces.** / Molnár, L.

Research output: Article

*Communications in Mathematical Physics*, vol. 210, no. 3, pp. 785-791.

}

TY - JOUR

T1 - Generalization of Wigner's unitary-antiunitary theorem for indefinite inner product spaces

AU - Molnár, L.

PY - 2000/4

Y1 - 2000/4

N2 - We present a generalization of Wigner's unitary-antiunitary theorem for pairs of ray transformations. As a particular case, we get a new Wigner-type theorem for non-Hermitian indefinite inner product spaces.

AB - We present a generalization of Wigner's unitary-antiunitary theorem for pairs of ray transformations. As a particular case, we get a new Wigner-type theorem for non-Hermitian indefinite inner product spaces.

UR - http://www.scopus.com/inward/record.url?scp=0034349904&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034349904&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0034349904

VL - 210

SP - 785

EP - 791

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 3

ER -