Abstract
Sleep-associated memory consolidation is thought to rely on coordinated information transfer between the hippocampus and neocortex brought about during slow wave sleep (SWS) by distinct local field potential oscillations. Specifically, findings in animals have led to the concept that ripples originating from hippocampus combine with spindles to provide a fine-tuned temporal frame for a persistent transfer of memory-related information to the neocortex. The present study focused on characterizing the temporal relationship between parahippocampal ripple activity (80-140Hz) and spindles recorded from frontal, parietal and parahippocampal cortices in 12 epilepsy patients implanted with parahippocampal foramen ovale electrodes. Overall, parietal and parahippocampal spindles showed closer relationships to parahippocampal ripple activity than frontal spindles, with the latter following parietal and parahippocampal spindles at a variable delay of up to 0.5s. On a timescale of seconds, ripple activity showed a continuous increase before the peak of parietal and parahippocampal spindles, and decreased thereafter. At a fine timescale of milliseconds, parahippocampal ripple activity was tightly phase-locked to the troughs of these spindles. The demonstration of spindle phase-locked ripple activity in humans is consistent with the idea of a temporally fine-tuned hippocampus-to-neocortex transfer of information taking place during SWS.
Original language | English |
---|---|
Pages (from-to) | 511-520 |
Number of pages | 10 |
Journal | European Journal of Neuroscience |
Volume | 33 |
Issue number | 3 |
DOIs | |
Publication status | Published - febr. 2011 |
Fingerprint
ASJC Scopus subject areas
- Neuroscience(all)
Cite this
Fine-tuned coupling between human parahippocampal ripples and sleep spindles. / Clemens, Z.; Mölle, Matthias; Erőss, L.; Jakus, R.; Rásonyi, G.; Halász, P.; Born, Jan.
In: European Journal of Neuroscience, Vol. 33, No. 3, 02.2011, p. 511-520.Research output: Article
}
TY - JOUR
T1 - Fine-tuned coupling between human parahippocampal ripples and sleep spindles
AU - Clemens, Z.
AU - Mölle, Matthias
AU - Erőss, L.
AU - Jakus, R.
AU - Rásonyi, G.
AU - Halász, P.
AU - Born, Jan
PY - 2011/2
Y1 - 2011/2
N2 - Sleep-associated memory consolidation is thought to rely on coordinated information transfer between the hippocampus and neocortex brought about during slow wave sleep (SWS) by distinct local field potential oscillations. Specifically, findings in animals have led to the concept that ripples originating from hippocampus combine with spindles to provide a fine-tuned temporal frame for a persistent transfer of memory-related information to the neocortex. The present study focused on characterizing the temporal relationship between parahippocampal ripple activity (80-140Hz) and spindles recorded from frontal, parietal and parahippocampal cortices in 12 epilepsy patients implanted with parahippocampal foramen ovale electrodes. Overall, parietal and parahippocampal spindles showed closer relationships to parahippocampal ripple activity than frontal spindles, with the latter following parietal and parahippocampal spindles at a variable delay of up to 0.5s. On a timescale of seconds, ripple activity showed a continuous increase before the peak of parietal and parahippocampal spindles, and decreased thereafter. At a fine timescale of milliseconds, parahippocampal ripple activity was tightly phase-locked to the troughs of these spindles. The demonstration of spindle phase-locked ripple activity in humans is consistent with the idea of a temporally fine-tuned hippocampus-to-neocortex transfer of information taking place during SWS.
AB - Sleep-associated memory consolidation is thought to rely on coordinated information transfer between the hippocampus and neocortex brought about during slow wave sleep (SWS) by distinct local field potential oscillations. Specifically, findings in animals have led to the concept that ripples originating from hippocampus combine with spindles to provide a fine-tuned temporal frame for a persistent transfer of memory-related information to the neocortex. The present study focused on characterizing the temporal relationship between parahippocampal ripple activity (80-140Hz) and spindles recorded from frontal, parietal and parahippocampal cortices in 12 epilepsy patients implanted with parahippocampal foramen ovale electrodes. Overall, parietal and parahippocampal spindles showed closer relationships to parahippocampal ripple activity than frontal spindles, with the latter following parietal and parahippocampal spindles at a variable delay of up to 0.5s. On a timescale of seconds, ripple activity showed a continuous increase before the peak of parietal and parahippocampal spindles, and decreased thereafter. At a fine timescale of milliseconds, parahippocampal ripple activity was tightly phase-locked to the troughs of these spindles. The demonstration of spindle phase-locked ripple activity in humans is consistent with the idea of a temporally fine-tuned hippocampus-to-neocortex transfer of information taking place during SWS.
KW - Epilepsy
KW - Hippocampus
KW - Ripples
KW - Sleep
KW - Spindles
UR - http://www.scopus.com/inward/record.url?scp=79251564916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79251564916&partnerID=8YFLogxK
U2 - 10.1111/j.1460-9568.2010.07505.x
DO - 10.1111/j.1460-9568.2010.07505.x
M3 - Article
C2 - 21138489
AN - SCOPUS:79251564916
VL - 33
SP - 511
EP - 520
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
SN - 0953-816X
IS - 3
ER -