D matrix analysis of the Renner-Teller effect: An accurate three-state diabatization for NH2

G. Halász, A. Vibók, R. Baer, M. Baer

Research output: Article

39 Citations (Scopus)

Abstract

Some time ago we published our first article on the Renner-Teller (RT) model to treat the electronic interaction for a triatomic molecule [J. Chem. Phys. 124, 081106 (2006)]. The main purpose of that Communication was to suggest considering the RT phenomenon as a topological effect, just like the Jahn-Teller phenomenon. However, whereas in the first publication we just summarized a few basic features to support that idea, here in the present article, we extend the topological approach and show that all the expected features that characterize a three (multi) state RT-type'3 system of a triatomic molecule can be studied and analyzed within the framework of that approach. This, among other things, enables us to employ the topological D matrix [Phys. Rev. A 62, 032506 (2000)] to determine, a priori, under what conditions a three-state system can be diabatized. The theoretical presentation is accompanied by a detailed numerical study as carried out for the HNH system. The D-matrix analysis shows that the two original electronic states 2A1 and 2B1 (evolving from the collinear degenerate II doublet), frequently used to study this Renner-Teller-type system, are insufficient for diabatization. This is true, in particular, for the stable ground-state configurations of the HNH molecule. However, by including just one additional electronic state - a B state (originating from a collinear ∑ state) - it is found that a rigorous, meaningful three-state diabatization can be carried out for large regions of configuration space, particularly for those, near the stable configuration of NH2. This opens the way for an accurate study of this important molecule even where the electronic angular momentum deviates significantly from an integer value.

Original languageEnglish
Article number094102
JournalThe Journal of Chemical Physics
Volume125
Issue number9
DOIs
Publication statusPublished - 2006

Fingerprint

triatomic molecules
Molecules
Electronic states
electronics
configurations
Angular momentum
Ground state
integers
molecules
angular momentum
communication
ground state
Communication
matrices
interactions

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

@article{708917ced49849e6b265d9418d73c864,
title = "D matrix analysis of the Renner-Teller effect: An accurate three-state diabatization for NH2",
abstract = "Some time ago we published our first article on the Renner-Teller (RT) model to treat the electronic interaction for a triatomic molecule [J. Chem. Phys. 124, 081106 (2006)]. The main purpose of that Communication was to suggest considering the RT phenomenon as a topological effect, just like the Jahn-Teller phenomenon. However, whereas in the first publication we just summarized a few basic features to support that idea, here in the present article, we extend the topological approach and show that all the expected features that characterize a three (multi) state RT-type'3 system of a triatomic molecule can be studied and analyzed within the framework of that approach. This, among other things, enables us to employ the topological D matrix [Phys. Rev. A 62, 032506 (2000)] to determine, a priori, under what conditions a three-state system can be diabatized. The theoretical presentation is accompanied by a detailed numerical study as carried out for the HNH system. The D-matrix analysis shows that the two original electronic states 2A1 and 2B1 (evolving from the collinear degenerate II doublet), frequently used to study this Renner-Teller-type system, are insufficient for diabatization. This is true, in particular, for the stable ground-state configurations of the HNH molecule. However, by including just one additional electronic state - a B state (originating from a collinear ∑ state) - it is found that a rigorous, meaningful three-state diabatization can be carried out for large regions of configuration space, particularly for those, near the stable configuration of NH2. This opens the way for an accurate study of this important molecule even where the electronic angular momentum deviates significantly from an integer value.",
author = "G. Hal{\'a}sz and A. Vib{\'o}k and R. Baer and M. Baer",
year = "2006",
doi = "10.1063/1.2336219",
language = "English",
volume = "125",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "9",

}

TY - JOUR

T1 - D matrix analysis of the Renner-Teller effect

T2 - An accurate three-state diabatization for NH2

AU - Halász, G.

AU - Vibók, A.

AU - Baer, R.

AU - Baer, M.

PY - 2006

Y1 - 2006

N2 - Some time ago we published our first article on the Renner-Teller (RT) model to treat the electronic interaction for a triatomic molecule [J. Chem. Phys. 124, 081106 (2006)]. The main purpose of that Communication was to suggest considering the RT phenomenon as a topological effect, just like the Jahn-Teller phenomenon. However, whereas in the first publication we just summarized a few basic features to support that idea, here in the present article, we extend the topological approach and show that all the expected features that characterize a three (multi) state RT-type'3 system of a triatomic molecule can be studied and analyzed within the framework of that approach. This, among other things, enables us to employ the topological D matrix [Phys. Rev. A 62, 032506 (2000)] to determine, a priori, under what conditions a three-state system can be diabatized. The theoretical presentation is accompanied by a detailed numerical study as carried out for the HNH system. The D-matrix analysis shows that the two original electronic states 2A1 and 2B1 (evolving from the collinear degenerate II doublet), frequently used to study this Renner-Teller-type system, are insufficient for diabatization. This is true, in particular, for the stable ground-state configurations of the HNH molecule. However, by including just one additional electronic state - a B state (originating from a collinear ∑ state) - it is found that a rigorous, meaningful three-state diabatization can be carried out for large regions of configuration space, particularly for those, near the stable configuration of NH2. This opens the way for an accurate study of this important molecule even where the electronic angular momentum deviates significantly from an integer value.

AB - Some time ago we published our first article on the Renner-Teller (RT) model to treat the electronic interaction for a triatomic molecule [J. Chem. Phys. 124, 081106 (2006)]. The main purpose of that Communication was to suggest considering the RT phenomenon as a topological effect, just like the Jahn-Teller phenomenon. However, whereas in the first publication we just summarized a few basic features to support that idea, here in the present article, we extend the topological approach and show that all the expected features that characterize a three (multi) state RT-type'3 system of a triatomic molecule can be studied and analyzed within the framework of that approach. This, among other things, enables us to employ the topological D matrix [Phys. Rev. A 62, 032506 (2000)] to determine, a priori, under what conditions a three-state system can be diabatized. The theoretical presentation is accompanied by a detailed numerical study as carried out for the HNH system. The D-matrix analysis shows that the two original electronic states 2A1 and 2B1 (evolving from the collinear degenerate II doublet), frequently used to study this Renner-Teller-type system, are insufficient for diabatization. This is true, in particular, for the stable ground-state configurations of the HNH molecule. However, by including just one additional electronic state - a B state (originating from a collinear ∑ state) - it is found that a rigorous, meaningful three-state diabatization can be carried out for large regions of configuration space, particularly for those, near the stable configuration of NH2. This opens the way for an accurate study of this important molecule even where the electronic angular momentum deviates significantly from an integer value.

UR - http://www.scopus.com/inward/record.url?scp=33748545362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748545362&partnerID=8YFLogxK

U2 - 10.1063/1.2336219

DO - 10.1063/1.2336219

M3 - Article

AN - SCOPUS:33748545362

VL - 125

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 9

M1 - 094102

ER -