Covering a graph with cuts of minimum total size

Zoltán Füredi, André Kündgen

Research output: Article

7 Citations (Scopus)


A cut in a graph G is the set of all edges between some set of vertices S and its complement S̄ = V(G) - S. A cut-cover of G is a collection of cuts whose union is E(G) and the total size of a cut-cover is the sum of the number of edges of the cuts in the cover. The cut-cover size of a graph G, denoted by cs(G), is the minimum total size of a cut-cover of G. We give general bounds on cs(G), find sharp bounds for classes of graphs such as 4-colorable graphs and random graphs. We also address algorithmic aspects and give sharp bounds for the sum of the cut-cover sizes of a graph and its complement. We close with a list of open problems.

Original languageEnglish
Pages (from-to)129-148
Number of pages20
JournalDiscrete Mathematics
Issue number1-3
Publication statusPublished - jún. 28 2001

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Fingerprint Dive into the research topics of 'Covering a graph with cuts of minimum total size'. Together they form a unique fingerprint.

  • Cite this