Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset

Tim Lammens, Véronique Boudolf, Leila Kheibarshekan, L. Panagiotis Zalmas, Tarik Gaamouche, Sara Maes, Marleen Vanstraelen, Eva Kondorosi, Nicholas B. La Thangue, Willy Govaerts, Dirk Inzé, Lieven De Veylder

Research output: Article

120 Citations (Scopus)


The endocycle represents an alternative cell cycle that is activated in various developmental processes, including placental formation, Drosophila oogenesis, and leaf development. In endocycling cells, mitotic cell cycle exit is followed by successive doublings of the DNA content, resulting in polyploidy. The timing of endocycle onset is crucial for correct development, because polyploidization is linked with cessation of cell division and initiation of terminal differentiation. The anaphase-promoting complex/cyclosome (APC/C) activator genes CDH1, FZR, and CCS52 are known to promote endocycle onset in human, Drosophila, and Medicago species cells, respectively; however, the genetic pathways governing development-dependent APC/CCDH1/FZR/CCS52 activity remain unknown. We report that the atypical E2F transcription factor E2Fe/DEL1 controls the expression of the CDH1/FZR orthologous CCS52A2 gene from Arabidopsis thaliana. E2Fe/DEL1 misregulation resulted in untimely CCS52A2 transcription, affecting the timing of endocycle onset. Correspondingly, ectopic CCS52A2 expression drove cells into the endocycle prematurely. Dynamic simulation illustrated that E2Fe/DEL1 accounted for the onset of the endocycle by regulating the temporal expression of CCS52A2 during the cell cycle in a development-dependent manner. Analogously, the atypical mammalian E2F7 protein was associated with the promoter of the APC/C-activating CDH1 gene, indicating that the transcriptional control of APC/C activator genes by atypical E2Fs might be evolutionarily conserved.

Original languageEnglish
Pages (from-to)14721-14726
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number38
Publication statusPublished - szept. 23 2008
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Atypical E2F activity restrains APC/C<sup>CCS52A2</sup> function obligatory for endocycle onset'. Together they form a unique fingerprint.

  • Cite this

    Lammens, T., Boudolf, V., Kheibarshekan, L., Zalmas, L. P., Gaamouche, T., Maes, S., Vanstraelen, M., Kondorosi, E., La Thangue, N. B., Govaerts, W., Inzé, D., & De Veylder, L. (2008). Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14721-14726.