XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films

É Kiss, I. Bertóti, E. I. Vargha-Butler

Research output: Contribution to journalArticle

93 Citations (Scopus)


Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters.

Original languageEnglish
Pages (from-to)91-98
Number of pages8
JournalJournal of colloid and interface science
Issue number1
Publication statusPublished - Jan 1 2002


  • Drug delivery
  • PLA
  • PLGA
  • Pluronics
  • Polymer blends
  • Surface modification
  • Wettability
  • XPS analysis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films'. Together they form a unique fingerprint.

  • Cite this