Wiener amalgams and summability of Fourier series

Research output: Contribution to journalArticle

Abstract

Some recent results on a general summability method, on the so-called θ-summability is summarized. New spaces, such as Wiener amalgams, Feichtinger’s algebra and modulation spaces are investigated in summability theory. Sufficient and necessary conditions are given for the norm and a.e. convergence of the θ-means.

Original languageEnglish
Pages (from-to)167-186
Number of pages20
JournalAnnales Mathematicae et Informaticae
Volume32
Publication statusPublished - Jan 1 2005

Fingerprint

Amalgam
Mercury amalgams
Fourier series
Summability
Algebra
Modulation
Modulation Spaces
Almost Everywhere Convergence
Norm
Necessary Conditions
Sufficient Conditions

Keywords

  • Besov-
  • Feichtinger’s algebra
  • Fractional Sobolev spaces
  • Hardy-Littlewood maximal function
  • Herz spaces
  • Homogeneous Banach spaces
  • Lebesgue points
  • Modulation spaces
  • Sobolev-
  • Wiener amalgam spaces
  • θ-summability of Fourier series

ASJC Scopus subject areas

  • Computer Science(all)
  • Mathematics(all)

Cite this

Wiener amalgams and summability of Fourier series. / Weisz, F.

In: Annales Mathematicae et Informaticae, Vol. 32, 01.01.2005, p. 167-186.

Research output: Contribution to journalArticle

@article{52944e53e5cd40bea9a40d015432419b,
title = "Wiener amalgams and summability of Fourier series",
abstract = "Some recent results on a general summability method, on the so-called θ-summability is summarized. New spaces, such as Wiener amalgams, Feichtinger’s algebra and modulation spaces are investigated in summability theory. Sufficient and necessary conditions are given for the norm and a.e. convergence of the θ-means.",
keywords = "Besov-, Feichtinger’s algebra, Fractional Sobolev spaces, Hardy-Littlewood maximal function, Herz spaces, Homogeneous Banach spaces, Lebesgue points, Modulation spaces, Sobolev-, Wiener amalgam spaces, θ-summability of Fourier series",
author = "F. Weisz",
year = "2005",
month = "1",
day = "1",
language = "English",
volume = "32",
pages = "167--186",
journal = "Annales Mathematicae et Informaticae",
issn = "1787-5021",
publisher = "Eszterhazy Karoly College",

}

TY - JOUR

T1 - Wiener amalgams and summability of Fourier series

AU - Weisz, F.

PY - 2005/1/1

Y1 - 2005/1/1

N2 - Some recent results on a general summability method, on the so-called θ-summability is summarized. New spaces, such as Wiener amalgams, Feichtinger’s algebra and modulation spaces are investigated in summability theory. Sufficient and necessary conditions are given for the norm and a.e. convergence of the θ-means.

AB - Some recent results on a general summability method, on the so-called θ-summability is summarized. New spaces, such as Wiener amalgams, Feichtinger’s algebra and modulation spaces are investigated in summability theory. Sufficient and necessary conditions are given for the norm and a.e. convergence of the θ-means.

KW - Besov-

KW - Feichtinger’s algebra

KW - Fractional Sobolev spaces

KW - Hardy-Littlewood maximal function

KW - Herz spaces

KW - Homogeneous Banach spaces

KW - Lebesgue points

KW - Modulation spaces

KW - Sobolev-

KW - Wiener amalgam spaces

KW - θ-summability of Fourier series

UR - http://www.scopus.com/inward/record.url?scp=85042089008&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042089008&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85042089008

VL - 32

SP - 167

EP - 186

JO - Annales Mathematicae et Informaticae

JF - Annales Mathematicae et Informaticae

SN - 1787-5021

ER -