Weak multiplier bialgebras

G. Böhm, José Gómez-Torrecillas, Esperanza López-Centella

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

A non-unital generalization of weak bialgebra is proposed with a multiplier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the 'base algebras') are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a nice enough weak multiplier bialgebra are shown to constitute a monoidal category via the (co)module tensor product over the base (co)algebra. The relation to Van Daele and Wang's (regular and arbitrary) weak multiplier Hopf algebra is discussed.

Original languageEnglish
Pages (from-to)8681-8721
Number of pages41
JournalTransactions of the American Mathematical Society
Volume367
Issue number12
DOIs
Publication statusPublished - Dec 1 2015

Fingerprint

Bialgebra
Algebra
Multiplier Algebra
Multiplier
Coalgebra
Module
Monoidal Category
Frobenius
Hopf Algebra
Tensor Product
Subalgebra
Tensors
Arbitrary

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Böhm, G., Gómez-Torrecillas, J., & López-Centella, E. (2015). Weak multiplier bialgebras. Transactions of the American Mathematical Society, 367(12), 8681-8721. https://doi.org/10.1090/tran/6308

Weak multiplier bialgebras. / Böhm, G.; Gómez-Torrecillas, José; López-Centella, Esperanza.

In: Transactions of the American Mathematical Society, Vol. 367, No. 12, 01.12.2015, p. 8681-8721.

Research output: Contribution to journalArticle

Böhm, G, Gómez-Torrecillas, J & López-Centella, E 2015, 'Weak multiplier bialgebras', Transactions of the American Mathematical Society, vol. 367, no. 12, pp. 8681-8721. https://doi.org/10.1090/tran/6308
Böhm G, Gómez-Torrecillas J, López-Centella E. Weak multiplier bialgebras. Transactions of the American Mathematical Society. 2015 Dec 1;367(12):8681-8721. https://doi.org/10.1090/tran/6308
Böhm, G. ; Gómez-Torrecillas, José ; López-Centella, Esperanza. / Weak multiplier bialgebras. In: Transactions of the American Mathematical Society. 2015 ; Vol. 367, No. 12. pp. 8681-8721.
@article{f3e3c64c5e45477791ab163887151532,
title = "Weak multiplier bialgebras",
abstract = "A non-unital generalization of weak bialgebra is proposed with a multiplier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the 'base algebras') are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a nice enough weak multiplier bialgebra are shown to constitute a monoidal category via the (co)module tensor product over the base (co)algebra. The relation to Van Daele and Wang's (regular and arbitrary) weak multiplier Hopf algebra is discussed.",
author = "G. B{\"o}hm and Jos{\'e} G{\'o}mez-Torrecillas and Esperanza L{\'o}pez-Centella",
year = "2015",
month = "12",
day = "1",
doi = "10.1090/tran/6308",
language = "English",
volume = "367",
pages = "8681--8721",
journal = "Transactions of the American Mathematical Society",
issn = "0002-9947",
publisher = "American Mathematical Society",
number = "12",

}

TY - JOUR

T1 - Weak multiplier bialgebras

AU - Böhm, G.

AU - Gómez-Torrecillas, José

AU - López-Centella, Esperanza

PY - 2015/12/1

Y1 - 2015/12/1

N2 - A non-unital generalization of weak bialgebra is proposed with a multiplier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the 'base algebras') are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a nice enough weak multiplier bialgebra are shown to constitute a monoidal category via the (co)module tensor product over the base (co)algebra. The relation to Van Daele and Wang's (regular and arbitrary) weak multiplier Hopf algebra is discussed.

AB - A non-unital generalization of weak bialgebra is proposed with a multiplier-valued comultiplication. Certain canonical subalgebras of the multiplier algebra (named the 'base algebras') are shown to carry coseparable co-Frobenius coalgebra structures. Appropriate modules over a nice enough weak multiplier bialgebra are shown to constitute a monoidal category via the (co)module tensor product over the base (co)algebra. The relation to Van Daele and Wang's (regular and arbitrary) weak multiplier Hopf algebra is discussed.

UR - http://www.scopus.com/inward/record.url?scp=84934881257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84934881257&partnerID=8YFLogxK

U2 - 10.1090/tran/6308

DO - 10.1090/tran/6308

M3 - Article

AN - SCOPUS:84934881257

VL - 367

SP - 8681

EP - 8721

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

SN - 0002-9947

IS - 12

ER -