Vibrational spectroscopic study of SiO2-based nanotubes

Christian E. Fischer, János Mink, László Hajba, Zoltán Bacsik, Csaba Németh, Judith Mihály, Alexander Raith, Mirza Cokoja, Fritz E. Kühn

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Novel organic-inorganic hybrid nanotubes containing silica and ethane (EtSNT), ethylene (ESNT) and acetylene (ASNT) units, as well as brominated ESNT (Br-ESNT) and glycine-modified Br-ESNT (Gly-ESNT) have been studied by IR and Raman spectroscopy. The results are compared with the spectral features for conventional silica nanotubes (SNT) and amorphous silica. Bands peculiar to organic moieties have been detected and assigned. Assignment of the silicate backbone vibrations was based on the results of normal coordinate calculations. Furthermore, characteristic silicate, so-called 'nanotube' vibrations have been identified and their band positions have been summarized to serve as a future reference for such compounds. SiOSi antisymmetric stretchings were observed in the range 1000-1110 cm-1, while the symmetric stretchings appeared between 760 and 960 cm-1 for EtSNT, ESNT and Br-ESNT. Force constants have been refined for models of the repeating structure units: O 3SiOSi(OSi)3 for SNT and SiCHnCH nSi(OSi)3 for organosilica nanotubes (n = 2, EtSNT; n = 1, ESNT and n = 0, ASNT). The calculated SiO stretching force constants were increased from 4.79 to 4.88 and 5.11 N cm-1 for EtSNT, ESNT and ASNT, respectively. The force constants have been compared with those for several silicates and SiO bond length are predicted and discussed.

Original languageEnglish
Pages (from-to)104-118
Number of pages15
JournalVibrational Spectroscopy
Volume66
DOIs
Publication statusPublished - Apr 8 2013

Keywords

  • Force constants
  • Infrared and Raman spectroscopy
  • Organosilica nanotubes
  • Silicate nanotube

ASJC Scopus subject areas

  • Spectroscopy

Fingerprint Dive into the research topics of 'Vibrational spectroscopic study of SiO<sub>2</sub>-based nanotubes'. Together they form a unique fingerprint.

  • Cite this

    Fischer, C. E., Mink, J., Hajba, L., Bacsik, Z., Németh, C., Mihály, J., Raith, A., Cokoja, M., & Kühn, F. E. (2013). Vibrational spectroscopic study of SiO2-based nanotubes. Vibrational Spectroscopy, 66, 104-118. https://doi.org/10.1016/j.vibspec.2013.01.012