Vanilloid receptor 1 expression in the rat urinary tract

A. Avelino, C. Cruz, I. Nagy, F. Cruz

Research output: Contribution to journalArticle

190 Citations (Scopus)

Abstract

Previous findings have shown that the capsaicin sensitivity of sensory fibres is due to the expression of a specific membrane protein, the vanilloid receptor type 1 (VR1). In the present work we studied the distribution, morphology and the neurochemical content of nerve fibres expressing this receptor in the rat urinary tract. Immunolabelling was performed against the VR1 and the positive fibres were examined by light and electron microscopy. Colocalisation of VR1 and substance P or calcitonin gene-related peptide immunoreactivities, and isolectin B4 binding, was evaluated under the confocal microscope. In addition, the effect of intravesical administration of resiniferatoxin, an ultrapotent vanilloid receptor agonist, in the receptor expression in the bladder was also studied. Numerous VR1-immunoreactive fibres were found in the mucosa and muscular layer of the entire urinary tract except the kidney. In the bladder, most fibres were also substance P- or calcitonin gene-related peptide-immunoreactive but did not bind isolectin B4. Under the electron microscope VR1 immunoreactivity was confined to unmyelinated axons and varicosities containing small clear and large dense-core synaptic vesicles. They occurred beneath or among epithelial cells or closely apposed to smooth muscle cells. Intravesical resiniferatoxin decreased VR1 immunoreactivity transiently. These data indicate that primary sensory fibres expressing VR1 are extremely abundant in the rat urinary tract and that, in contrast to the skin, they belong almost exclusively to the peptide-containing sub-population of primary afferents. As capsaicin-sensitive bladder afferents are involved in nociception and reflex micturition control, the numerous free terminal nerve endings expressing VR1 in the mucosa seem more adequate to accomplish the former function. However, the close apposition between VR1-expressing fibres and smooth muscle cells suggests that they may also encode the tonus of the muscular layer.

Original languageEnglish
Pages (from-to)787-798
Number of pages12
JournalNeuroscience
Volume109
Issue number4
DOIs
Publication statusPublished - Feb 22 2002

Keywords

  • Bladder hyperreflexia
  • Capsaicin
  • Pain
  • Primary afferent
  • Resiniferatoxin
  • Visceral

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Vanilloid receptor 1 expression in the rat urinary tract'. Together they form a unique fingerprint.

  • Cite this