Unitary perturbation theory applied to multiconfigurational reference functions

Péter R. Nagy, Ágnes Szabados

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Unitary parametrization of the wave operator in the form suggested by Mayer is studied in the multireference framework. The investigated unitary perturbation theory (UPT) constructs a first correction in terms of the functions having nonzero interaction with the reference state via the Hamiltonian. Parameters in the exponential of the wave operator are determined by two dimensional eigenvalue equations. Because of the unitary mapping, UPT is unaffected by the quasi-degeneracy problem, making it an ideal tool for correcting multireference starting functions. Lack of size-consistency is however a shortcoming of the method. Applications of UPT as well as the related degeneracy-corrected PT (DCPT) are presented on intruder prone examples like the symmetric dissociation of the water molecule, the BeH2 system and the two lowest lying states of the scandium dimer. Size consistency violation is analysed and evaluated on the example of the water dimer. Tractability of excited states by UPT is examined by computing the singlet-triplet splitting of the CH2 molecule.

Original languageEnglish
Pages (from-to)230-238
Number of pages9
JournalInternational Journal of Quantum Chemistry
Volume113
Issue number3
DOIs
Publication statusPublished - Feb 5 2013

Keywords

  • Jacobi rotation
  • intruder state problem
  • multireference function
  • perturbation theory
  • unitary wave operator

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Unitary perturbation theory applied to multiconfigurational reference functions'. Together they form a unique fingerprint.

  • Cite this