Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Two methods are developed, when solving the related time-independent Schrödinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of functions of a three-dimensional nondirect-product basis, where basis functions are formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation, depending on distance-type coordinates and Legendre polynomials depending on angle bending. In the second method one of the singular terms related to a distance-type coordinate, deemed to be unimportant for spectroscopic applications, is given no special treatment. Here the basis set is obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre polynomials. With the basis functions defined, matrix representations of the TISE are set up and solved numerically to obtain the vibrational energy levels of H 3 +. The numerical calculations show that the first method treating all singularities is computationally inefficient, while the second method treating properly only the singularities having physical importance is quite efficient.

Original languageEnglish
Article number024101
JournalJournal of Chemical Physics
Volume122
Issue number2
DOIs
Publication statusPublished - Aug 8 2005

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates'. Together they form a unique fingerprint.

  • Cite this