Towards the equation of state at finite density from the lattice

Szabolcs Borsanyi, Z. Fodor, Jana N. Guenther, Sandor K. Katz, Attila Pasztor, Israel Portillo, Claudia Ratti, K. K. Szabó

Research output: Contribution to journalArticle

Abstract

A new precision lattice simulation set is analyzed for the equation of state to sixth order. We used lattice results at imaginary chemical potentials to calculate the Taylor coefficients, from which the pressure, trace anomaly, energy and entropy density as well as the baryon number can be derived. We discuss an alternative extrapolation strategy and show first results for zero strangeness chemical potential.

Original languageEnglish
Pages (from-to)223-226
Number of pages4
JournalNuclear Physics A
Volume982
DOIs
Publication statusPublished - Feb 1 2019

Fingerprint

equations of state
strangeness
extrapolation
baryons
flux density
entropy
anomalies
coefficients
simulation

Keywords

  • Equation of state
  • lattice QCD

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Borsanyi, S., Fodor, Z., Guenther, J. N., Katz, S. K., Pasztor, A., Portillo, I., ... Szabó, K. K. (2019). Towards the equation of state at finite density from the lattice. Nuclear Physics A, 982, 223-226. https://doi.org/10.1016/j.nuclphysa.2018.12.016

Towards the equation of state at finite density from the lattice. / Borsanyi, Szabolcs; Fodor, Z.; Guenther, Jana N.; Katz, Sandor K.; Pasztor, Attila; Portillo, Israel; Ratti, Claudia; Szabó, K. K.

In: Nuclear Physics A, Vol. 982, 01.02.2019, p. 223-226.

Research output: Contribution to journalArticle

Borsanyi, S, Fodor, Z, Guenther, JN, Katz, SK, Pasztor, A, Portillo, I, Ratti, C & Szabó, KK 2019, 'Towards the equation of state at finite density from the lattice', Nuclear Physics A, vol. 982, pp. 223-226. https://doi.org/10.1016/j.nuclphysa.2018.12.016
Borsanyi, Szabolcs ; Fodor, Z. ; Guenther, Jana N. ; Katz, Sandor K. ; Pasztor, Attila ; Portillo, Israel ; Ratti, Claudia ; Szabó, K. K. / Towards the equation of state at finite density from the lattice. In: Nuclear Physics A. 2019 ; Vol. 982. pp. 223-226.
@article{f4d7ceddd8e94ece8a353d5e79f767d9,
title = "Towards the equation of state at finite density from the lattice",
abstract = "A new precision lattice simulation set is analyzed for the equation of state to sixth order. We used lattice results at imaginary chemical potentials to calculate the Taylor coefficients, from which the pressure, trace anomaly, energy and entropy density as well as the baryon number can be derived. We discuss an alternative extrapolation strategy and show first results for zero strangeness chemical potential.",
keywords = "Equation of state, lattice QCD",
author = "Szabolcs Borsanyi and Z. Fodor and Guenther, {Jana N.} and Katz, {Sandor K.} and Attila Pasztor and Israel Portillo and Claudia Ratti and Szab{\'o}, {K. K.}",
year = "2019",
month = "2",
day = "1",
doi = "10.1016/j.nuclphysa.2018.12.016",
language = "English",
volume = "982",
pages = "223--226",
journal = "Nuclear Physics A",
issn = "0375-9474",
publisher = "Elsevier",

}

TY - JOUR

T1 - Towards the equation of state at finite density from the lattice

AU - Borsanyi, Szabolcs

AU - Fodor, Z.

AU - Guenther, Jana N.

AU - Katz, Sandor K.

AU - Pasztor, Attila

AU - Portillo, Israel

AU - Ratti, Claudia

AU - Szabó, K. K.

PY - 2019/2/1

Y1 - 2019/2/1

N2 - A new precision lattice simulation set is analyzed for the equation of state to sixth order. We used lattice results at imaginary chemical potentials to calculate the Taylor coefficients, from which the pressure, trace anomaly, energy and entropy density as well as the baryon number can be derived. We discuss an alternative extrapolation strategy and show first results for zero strangeness chemical potential.

AB - A new precision lattice simulation set is analyzed for the equation of state to sixth order. We used lattice results at imaginary chemical potentials to calculate the Taylor coefficients, from which the pressure, trace anomaly, energy and entropy density as well as the baryon number can be derived. We discuss an alternative extrapolation strategy and show first results for zero strangeness chemical potential.

KW - Equation of state

KW - lattice QCD

UR - http://www.scopus.com/inward/record.url?scp=85060163252&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060163252&partnerID=8YFLogxK

U2 - 10.1016/j.nuclphysa.2018.12.016

DO - 10.1016/j.nuclphysa.2018.12.016

M3 - Article

VL - 982

SP - 223

EP - 226

JO - Nuclear Physics A

JF - Nuclear Physics A

SN - 0375-9474

ER -