Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations

Research output: Contribution to journalArticle

119 Citations (Scopus)


A black-box-type algorithm is presented for the variational computation of energy levels and wave functions using a (ro)vibrational Hamiltonian expressed in an arbitrarily chosen body-fixed frame and in any set of internal coordinates of full or reduced vibrational dimensionality. To make the required numerical work feasible, matrix representation of the operators is constructed using a discrete variable representation (DVR). The favorable properties of DVR are exploited in the straightforward and numerically exact inclusion of any representation of the potential and the kinetic energy including the G matrix and the extrapotential term. In this algorithm there is no need for an a priori analytic derivation of the kinetic energy operator, as all of its matrix elements at each grid point are computed numerically either in a full- or a reduced-dimensional model. Due to the simple and straightforward definition of reduced-dimensional models within this approach, a fully anharmonic variational treatment of large, otherwise intractable molecular systems becomes available. In the computer code based on the above algorithm, there is no inherent limitation for the maximally coupled number of vibrational degrees of freedom. However, in practice current personal computers allow the treatment of about nine fully coupled vibrational dimensions. Computation of vibrational band origins of full and reduced dimensions showing the advantages and limitations of the algorithm and the related computer code are presented for the water, ammonia, and methane molecules.

Original languageEnglish
Article number134112
JournalJournal of Chemical Physics
Issue number13
Publication statusPublished - Apr 20 2009


ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this