### Abstract

Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + C_{K} log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

Original language | English |
---|---|

Title of host publication | Bolyai Society Mathematical Studies |

Pages | 95-137 |

Number of pages | 43 |

Volume | 20 |

DOIs | |

Publication status | Published - 2010 |

Event | Meeting on Fete of Combinatorics and Computer Science - Keszthely, Hungary Duration: Aug 11 2008 → Aug 15 2008 |

### Other

Other | Meeting on Fete of Combinatorics and Computer Science |
---|---|

Country | Hungary |

City | Keszthely |

Period | 8/11/08 → 8/15/08 |

### Fingerprint

### ASJC Scopus subject areas

- Computational Theory and Mathematics
- Applied Mathematics

### Cite this

*Bolyai Society Mathematical Studies*(Vol. 20, pp. 95-137) https://doi.org/10.1007/978-3-642-13580-4_5

**Tight bounds for embedding bounded degree trees.** / Csaba, Béla; Levitt, Ian; Nagy-György, Judit; Szemerédi, E.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution

*Bolyai Society Mathematical Studies.*vol. 20, pp. 95-137, Meeting on Fete of Combinatorics and Computer Science, Keszthely, Hungary, 8/11/08. https://doi.org/10.1007/978-3-642-13580-4_5

}

TY - GEN

T1 - Tight bounds for embedding bounded degree trees

AU - Csaba, Béla

AU - Levitt, Ian

AU - Nagy-György, Judit

AU - Szemerédi, E.

PY - 2010

Y1 - 2010

N2 - Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

AB - Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

UR - http://www.scopus.com/inward/record.url?scp=84880318463&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880318463&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-13580-4_5

DO - 10.1007/978-3-642-13580-4_5

M3 - Conference contribution

AN - SCOPUS:84880318463

SN - 9783642135798

VL - 20

SP - 95

EP - 137

BT - Bolyai Society Mathematical Studies

ER -