Tight bounds for embedding bounded degree trees

Béla Csaba, Ian Levitt, Judit Nagy-György, E. Szemerédi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

Original languageEnglish
Title of host publicationBolyai Society Mathematical Studies
Pages95-137
Number of pages43
Volume20
DOIs
Publication statusPublished - 2010
EventMeeting on Fete of Combinatorics and Computer Science - Keszthely, Hungary
Duration: Aug 11 2008Aug 15 2008

Other

OtherMeeting on Fete of Combinatorics and Computer Science
CountryHungary
CityKeszthely
Period8/11/088/15/08

Fingerprint

Minimum Degree
Maximum Degree
Graph in graph theory

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Applied Mathematics

Cite this

Csaba, B., Levitt, I., Nagy-György, J., & Szemerédi, E. (2010). Tight bounds for embedding bounded degree trees. In Bolyai Society Mathematical Studies (Vol. 20, pp. 95-137) https://doi.org/10.1007/978-3-642-13580-4_5

Tight bounds for embedding bounded degree trees. / Csaba, Béla; Levitt, Ian; Nagy-György, Judit; Szemerédi, E.

Bolyai Society Mathematical Studies. Vol. 20 2010. p. 95-137.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Csaba, B, Levitt, I, Nagy-György, J & Szemerédi, E 2010, Tight bounds for embedding bounded degree trees. in Bolyai Society Mathematical Studies. vol. 20, pp. 95-137, Meeting on Fete of Combinatorics and Computer Science, Keszthely, Hungary, 8/11/08. https://doi.org/10.1007/978-3-642-13580-4_5
Csaba B, Levitt I, Nagy-György J, Szemerédi E. Tight bounds for embedding bounded degree trees. In Bolyai Society Mathematical Studies. Vol. 20. 2010. p. 95-137 https://doi.org/10.1007/978-3-642-13580-4_5
Csaba, Béla ; Levitt, Ian ; Nagy-György, Judit ; Szemerédi, E. / Tight bounds for embedding bounded degree trees. Bolyai Society Mathematical Studies. Vol. 20 2010. pp. 95-137
@inproceedings{290a567a12df47d2b84e95ad9f7879c5,
title = "Tight bounds for embedding bounded degree trees",
abstract = "Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.",
author = "B{\'e}la Csaba and Ian Levitt and Judit Nagy-Gy{\"o}rgy and E. Szemer{\'e}di",
year = "2010",
doi = "10.1007/978-3-642-13580-4_5",
language = "English",
isbn = "9783642135798",
volume = "20",
pages = "95--137",
booktitle = "Bolyai Society Mathematical Studies",

}

TY - GEN

T1 - Tight bounds for embedding bounded degree trees

AU - Csaba, Béla

AU - Levitt, Ian

AU - Nagy-György, Judit

AU - Szemerédi, E.

PY - 2010

Y1 - 2010

N2 - Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

AB - Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

UR - http://www.scopus.com/inward/record.url?scp=84880318463&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880318463&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-13580-4_5

DO - 10.1007/978-3-642-13580-4_5

M3 - Conference contribution

AN - SCOPUS:84880318463

SN - 9783642135798

VL - 20

SP - 95

EP - 137

BT - Bolyai Society Mathematical Studies

ER -