Tight bounds for embedding bounded degree trees

Béla Csaba, Ian Levitt, Judit Nagy-György, Endre Szemerédi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Let T be a tree on n vertices with constant maximum degree K. Let G be a graph on n vertices having minimum degree δ(G) ≥ n/2 + CK log n, where CK is a constant. If n is sufficiently large then T ⊂ G. We also show that the bound on the minimum degree of G is tight.

Original languageEnglish
Title of host publicationFete of Combinatorics and Computer Science
Pages95-137
Number of pages43
DOIs
Publication statusPublished - Dec 1 2010
EventMeeting on Fete of Combinatorics and Computer Science - Keszthely, Hungary
Duration: Aug 11 2008Aug 15 2008

Publication series

NameBolyai Society Mathematical Studies
Volume20
ISSN (Print)1217-4696
ISSN (Electronic)1217-4696

Other

OtherMeeting on Fete of Combinatorics and Computer Science
CountryHungary
CityKeszthely
Period8/11/088/15/08

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Tight bounds for embedding bounded degree trees'. Together they form a unique fingerprint.

  • Cite this

    Csaba, B., Levitt, I., Nagy-György, J., & Szemerédi, E. (2010). Tight bounds for embedding bounded degree trees. In Fete of Combinatorics and Computer Science (pp. 95-137). (Bolyai Society Mathematical Studies; Vol. 20). https://doi.org/10.1007/978-3-642-13580-4_5