Thickness-dependent magnetic structure of ultrathin Fe/Ir(001) films: From spin-spiral states toward ferromagnetic order

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

We present a detailed study of the ground-state magnetic structure of ultrathin Fe films on the surface of fcc Ir(001). We use the spin-cluster expansion technique in combination with the relativistic disordered local moment scheme to obtain parameters of spin models and then determine the favored magnetic structure of the system by means of a mean-field approach and atomistic spin dynamics simulations. For the case of a single monolayer of Fe, we find that layer relaxations very strongly influence the ground-state spin configurations, whereas Dzyaloshinskii-Moriya (DM) interactions and biquadratic couplings also have remarkable effects. To characterize the latter effect, we introduce and analyze spin collinearity maps of the system. While for two monolayers of Fe we find a single-q spin spiral as ground state due to DM interactions, for the case of four monolayers, the system shows a noncollinear spin structure with nonzero net magnetization. These findings are consistent with experimental measurements indicating ferromagnetic order in films of four monolayers and thicker.

Original languageEnglish
Article number224413
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number22
DOIs
Publication statusPublished - Dec 16 2011

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Thickness-dependent magnetic structure of ultrathin Fe/Ir(001) films: From spin-spiral states toward ferromagnetic order'. Together they form a unique fingerprint.

  • Cite this