The Turán density of the hypergraph {abc, ade, bde, cde}

Z. Füredi, Oleg Pikhurko, M. Simonovits

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and Rödl.

Original languageEnglish
JournalElectronic Journal of Combinatorics
Volume10
Issue number1 R
Publication statusPublished - May 3 2003

Fingerprint

Hypergraph
Graph in graph theory
Denote

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics

Cite this

The Turán density of the hypergraph {abc, ade, bde, cde}. / Füredi, Z.; Pikhurko, Oleg; Simonovits, M.

In: Electronic Journal of Combinatorics, Vol. 10, No. 1 R, 03.05.2003.

Research output: Contribution to journalArticle

@article{d1f140f8e0334a449af56b2470c453fe,
title = "The Tur{\'a}n density of the hypergraph {abc, ade, bde, cde}",
abstract = "Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and R{\"o}dl.",
author = "Z. F{\"u}redi and Oleg Pikhurko and M. Simonovits",
year = "2003",
month = "5",
day = "3",
language = "English",
volume = "10",
journal = "Electronic Journal of Combinatorics",
issn = "1077-8926",
publisher = "Electronic Journal of Combinatorics",
number = "1 R",

}

TY - JOUR

T1 - The Turán density of the hypergraph {abc, ade, bde, cde}

AU - Füredi, Z.

AU - Pikhurko, Oleg

AU - Simonovits, M.

PY - 2003/5/3

Y1 - 2003/5/3

N2 - Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and Rödl.

AB - Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and Rödl.

UR - http://www.scopus.com/inward/record.url?scp=17344388629&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17344388629&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:17344388629

VL - 10

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 1 R

ER -