### Abstract

Let F _{3,2} denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F _{3,2}-free 3-graph on n vertices is (4/9 + o(1))( _{3} ^{n}), proving a conjecture of Mubayi and Rödl.

Original language | English |
---|---|

Journal | Electronic Journal of Combinatorics |

Volume | 10 |

Issue number | 1 R |

Publication status | Published - May 3 2003 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics

### Cite this

*Electronic Journal of Combinatorics*,

*10*(1 R).

**The Turán density of the hypergraph {abc, ade, bde, cde}.** / Füredi, Z.; Pikhurko, Oleg; Simonovits, M.

Research output: Contribution to journal › Article

*Electronic Journal of Combinatorics*, vol. 10, no. 1 R.

}

TY - JOUR

T1 - The Turán density of the hypergraph {abc, ade, bde, cde}

AU - Füredi, Z.

AU - Pikhurko, Oleg

AU - Simonovits, M.

PY - 2003/5/3

Y1 - 2003/5/3

N2 - Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and Rödl.

AB - Let F 3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum size of an F 3,2-free 3-graph on n vertices is (4/9 + o(1))( 3 n), proving a conjecture of Mubayi and Rödl.

UR - http://www.scopus.com/inward/record.url?scp=17344388629&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17344388629&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:17344388629

VL - 10

JO - Electronic Journal of Combinatorics

JF - Electronic Journal of Combinatorics

SN - 1077-8926

IS - 1 R

ER -