The size Ramsey number of a complete bipartite graph

P. Erdős, C. C. Rousseau

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

In this note we prove that the (diagonal) size Ramsey number of Kn.n is bounded below by 1 60n22n.

Original languageEnglish
Pages (from-to)259-262
Number of pages4
JournalDiscrete Mathematics
Volume113
Issue number1-3
DOIs
Publication statusPublished - Apr 5 1993

Fingerprint

Ramsey number
Complete Bipartite Graph

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

The size Ramsey number of a complete bipartite graph. / Erdős, P.; Rousseau, C. C.

In: Discrete Mathematics, Vol. 113, No. 1-3, 05.04.1993, p. 259-262.

Research output: Contribution to journalArticle

Erdős, P. ; Rousseau, C. C. / The size Ramsey number of a complete bipartite graph. In: Discrete Mathematics. 1993 ; Vol. 113, No. 1-3. pp. 259-262.
@article{2aed9628db9c4d05847350b1bf68b7db,
title = "The size Ramsey number of a complete bipartite graph",
abstract = "In this note we prove that the (diagonal) size Ramsey number of Kn.n is bounded below by 1 60n22n.",
author = "P. Erdős and Rousseau, {C. C.}",
year = "1993",
month = "4",
day = "5",
doi = "10.1016/0012-365X(93)90521-T",
language = "English",
volume = "113",
pages = "259--262",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - The size Ramsey number of a complete bipartite graph

AU - Erdős, P.

AU - Rousseau, C. C.

PY - 1993/4/5

Y1 - 1993/4/5

N2 - In this note we prove that the (diagonal) size Ramsey number of Kn.n is bounded below by 1 60n22n.

AB - In this note we prove that the (diagonal) size Ramsey number of Kn.n is bounded below by 1 60n22n.

UR - http://www.scopus.com/inward/record.url?scp=38249001804&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249001804&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(93)90521-T

DO - 10.1016/0012-365X(93)90521-T

M3 - Article

AN - SCOPUS:38249001804

VL - 113

SP - 259

EP - 262

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -