The size Ramsey number

P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

Let[Figure not available: see fulltext.] denote the class of all graphs G which satisfy G→(G1, G2). As a way of measuring minimality for members of[Figure not available: see fulltext.], we define the size Ramsey number ř(G1, G2) by[Figure not available: see fulltext.]. We then investigate various questions concerned with the asymptotic behaviour of ř.

Original languageEnglish
Pages (from-to)145-161
Number of pages17
JournalPeriodica Mathematica Hungarica
Volume9
Issue number1-2
DOIs
Publication statusPublished - Mar 1978

Fingerprint

Ramsey number
Figure
Minimality
Asymptotic Behavior
Denote
Graph in graph theory

Keywords

  • AMS (MOS) subject classifications (1970): Primary 05B40
  • o-sequences
  • Ramsey

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Erdős, P., Faudree, R. J., Rousseau, C. C., & Schelp, R. H. (1978). The size Ramsey number. Periodica Mathematica Hungarica, 9(1-2), 145-161. https://doi.org/10.1007/BF02018930

The size Ramsey number. / Erdős, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H.

In: Periodica Mathematica Hungarica, Vol. 9, No. 1-2, 03.1978, p. 145-161.

Research output: Contribution to journalArticle

Erdős, P, Faudree, RJ, Rousseau, CC & Schelp, RH 1978, 'The size Ramsey number', Periodica Mathematica Hungarica, vol. 9, no. 1-2, pp. 145-161. https://doi.org/10.1007/BF02018930
Erdős P, Faudree RJ, Rousseau CC, Schelp RH. The size Ramsey number. Periodica Mathematica Hungarica. 1978 Mar;9(1-2):145-161. https://doi.org/10.1007/BF02018930
Erdős, P. ; Faudree, R. J. ; Rousseau, C. C. ; Schelp, R. H. / The size Ramsey number. In: Periodica Mathematica Hungarica. 1978 ; Vol. 9, No. 1-2. pp. 145-161.
@article{b23f37faa5da45d5984fce9040384e4a,
title = "The size Ramsey number",
abstract = "Let[Figure not available: see fulltext.] denote the class of all graphs G which satisfy G→(G1, G2). As a way of measuring minimality for members of[Figure not available: see fulltext.], we define the size Ramsey number ř(G1, G2) by[Figure not available: see fulltext.]. We then investigate various questions concerned with the asymptotic behaviour of ř.",
keywords = "AMS (MOS) subject classifications (1970): Primary 05B40, o-sequences, Ramsey",
author = "P. Erdős and Faudree, {R. J.} and Rousseau, {C. C.} and Schelp, {R. H.}",
year = "1978",
month = "3",
doi = "10.1007/BF02018930",
language = "English",
volume = "9",
pages = "145--161",
journal = "Periodica Mathematica Hungarica",
issn = "0031-5303",
publisher = "Springer Netherlands",
number = "1-2",

}

TY - JOUR

T1 - The size Ramsey number

AU - Erdős, P.

AU - Faudree, R. J.

AU - Rousseau, C. C.

AU - Schelp, R. H.

PY - 1978/3

Y1 - 1978/3

N2 - Let[Figure not available: see fulltext.] denote the class of all graphs G which satisfy G→(G1, G2). As a way of measuring minimality for members of[Figure not available: see fulltext.], we define the size Ramsey number ř(G1, G2) by[Figure not available: see fulltext.]. We then investigate various questions concerned with the asymptotic behaviour of ř.

AB - Let[Figure not available: see fulltext.] denote the class of all graphs G which satisfy G→(G1, G2). As a way of measuring minimality for members of[Figure not available: see fulltext.], we define the size Ramsey number ř(G1, G2) by[Figure not available: see fulltext.]. We then investigate various questions concerned with the asymptotic behaviour of ř.

KW - AMS (MOS) subject classifications (1970): Primary 05B40

KW - o-sequences

KW - Ramsey

UR - http://www.scopus.com/inward/record.url?scp=0001406288&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001406288&partnerID=8YFLogxK

U2 - 10.1007/BF02018930

DO - 10.1007/BF02018930

M3 - Article

AN - SCOPUS:0001406288

VL - 9

SP - 145

EP - 161

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 1-2

ER -