The role of protein kinase C in ischemic/reperfused preconditioned isolated rat hearts

Arpad Tosaki, Nilanjana Maulik, Daniel T. Engelman, Richard M. Engelman, Dipak K. Das

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Protein kinase C (PKC) has been implicated in the preconditioning- induced cardiac protection in ischemic/reperfused myocardium. We studied the effect of PKC inhibition with calphostin C (25, 50, 100, 200, 400, and 800 nM), a potent and specific inhibitor of PKC, in isolated working nonpreconditioned and preconditioned ischemic/reperfused hearts. In the nonpreconditioned groups, all hearts underwent 30 min of normothermic global ischemia followed by 30 min of reperfusion. In the preconditioned groups, hearts were subjected to four cycles of ischemic preconditioning by using 5 min of ischemia followed by 10 min reperfusion, before the induction of 30 min ischemia and reperfusion. At low concentrations of calphostin C (25, 50, and 100 nM), the PKC inhibitor had no effect on the incidence of arrhythmias or postischemic cardiac function in the nonpreconditioned ischemic/reperfused groups. With 200 and 400 nM of calphostin C, a significant increase in postischemic function and a reduction in the incidence of arrhythmias were observed in the nonpreconditioned ischemic/reperfused groups. Increasing the concentration of calphostin C to 800 nM, the recovery of postischemic cardiac function was similar to that of the drug-free control group. In preconditioned hearts, lower concentrations (< 100 nM) of calphostin C did not change the response of the myocardium to ischemia and reperfusion in comparison to the preconditioned drug-free myocardium. Two hundred and 400 nM of the PKC inhibitor further reduced the incidence of ventricular fibrillation (VF) from the preconditioned drug-free value of 50% to 0 (p < 0.05) and 0 (p < 0.05), respectively, indicating that the combination of the two, preconditioning and calphostin C, affords significant additional protection. Increasing the concentration of calphostin C to 800 nM blocked the cardioprotective effect of preconditioning (100% incidence of VF). The recovery of cardiac function was similarly improved at calphostin C doses of 200 and 400 nM and was reduced at 800 nM (p < 0.05). With 200 and 400 nM of calphostin C, both cytosolic and particulate PKC activity were reduced by ~40 and 60%, respectively, in both preconditioned and preconditioned/ischemic/reperfused hearts. The highest concentration of calphostin C (800 nM) resulted in almost a complete inhibition of cytosolic (100%) and particulate (85%) PKC activity correlated with the abolition of preconditioning-induced cardiac protection. In conclusion, calphostin C protects the ischemic myocardium obtained from intact animals, provides significant additional protection to preconditioning at moderate doses, and blocks the protective effect of preconditioning at high concentrations. The dual effects of calphostin C appear to be strictly dose and 'enzyme inhibition' related.

Original languageEnglish
Pages (from-to)723-731
Number of pages9
JournalJournal of cardiovascular pharmacology
Volume28
Issue number5
DOIs
Publication statusPublished - Dec 7 1996

Keywords

  • Arrhythmias
  • Cardiac function
  • Ischemia/reperfusion
  • Isolated heart
  • Preconditioning
  • Protein kinase C
  • Rat

ASJC Scopus subject areas

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'The role of protein kinase C in ischemic/reperfused preconditioned isolated rat hearts'. Together they form a unique fingerprint.

  • Cite this