The role of endothelin-I in hyperoxia-induced lung injury in mice

Walid Habre, Ferenc Peták, Isabelle Ruchonnet-Metrailler, Yves Donati, Jean Francois Tolsa, Eniko Lele, Gergely Albu, Morice Beghetti, Constance Barazzone-Argiroffo

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Background: As prolonged hyperoxia induces extensive lung tissue damage, we set out to investigate the involvement of endothelin-1 (ET-1) receptors in these adverse changes. Methods: Experiments were performed on four groups of mice: control animals kept in room air and a group of mice exposed to hyperoxia for 60 h were not subjected to ET-1 receptor blockade, whereas the dual ETA/ ETB-receptor blocker tezosantan (TEZ) was administered via an intraperitoneal pump (10 mg/kg/day for 6 days) to other groups of normal and hyperoxic mice. The respiratory system impedance (Zrs) was measured by means of forced oscillations in the anesthetized, paralyzed and mechanically ventilated mice before and after the iv injection of ET-1 (2 μg). Changes in the airway resistance (Raw) and in the tissue damping (G) and elastance (H) of a constant-phase tissue compartment were identified from Zrs by model fitting. Results: The plasma ET-1 level increased in the mice exposed to hyperoxia (3.3 ± 1.6 pg/ml) relative to those exposed to room air (1.6 ± 0.3 pg/ml, p < 0.05). TEZ administration prevented the hyperoxia-induced increases in G (13.1 ± 1.7 vs. 9.6 ± 0.3 cmH2O/l, p < 0.05) and H (59 ± 9 vs. 41 ± 5 cmH2O/l, p < 0.05) and inhibited the lung responses to ET-1. Hyperoxia decreased the reactivity of the airways to ET-1, whereas it elevated the reactivity of the tissues. Conclusion: These findings substantiate the involvement of the ET-1 receptors in the physiopathogenesis of hyperoxia-induced lung damage. Dual ET-1 receptor antagonism may well be of value in the prevention of hyperoxia-induced parenchymal damage.

Original languageEnglish
Article number45
JournalRespiratory Research
Volume7
DOIs
Publication statusPublished - Mar 27 2006

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine

Fingerprint Dive into the research topics of 'The role of endothelin-I in hyperoxia-induced lung injury in mice'. Together they form a unique fingerprint.

  • Cite this

    Habre, W., Peták, F., Ruchonnet-Metrailler, I., Donati, Y., Tolsa, J. F., Lele, E., Albu, G., Beghetti, M., & Barazzone-Argiroffo, C. (2006). The role of endothelin-I in hyperoxia-induced lung injury in mice. Respiratory Research, 7, [45]. https://doi.org/10.1186/1465-9921-7-45