### Abstract

This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ck^{g/8}.

Original language | English |
---|---|

Pages (from-to) | 55-60 |

Number of pages | 6 |

Journal | Discrete Mathematics |

Volume | 200 |

Issue number | 1-3 |

Publication status | Published - Apr 6 1999 |

### Fingerprint

### Keywords

- Cycle lengths
- Girth
- Minimum degree
- Predecessor

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*200*(1-3), 55-60.

**The number of cycle lengths in graphs of given minimum degree and girth.** / Erdős, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 200, no. 1-3, pp. 55-60.

}

TY - JOUR

T1 - The number of cycle lengths in graphs of given minimum degree and girth

AU - Erdős, P.

AU - Faudree, R. J.

AU - Rousseau, C. C.

AU - Schelp, R. H.

PY - 1999/4/6

Y1 - 1999/4/6

N2 - This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.

AB - This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.

KW - Cycle lengths

KW - Girth

KW - Minimum degree

KW - Predecessor

UR - http://www.scopus.com/inward/record.url?scp=0347670974&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0347670974&partnerID=8YFLogxK

M3 - Article

VL - 200

SP - 55

EP - 60

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -