The number of cycle lengths in graphs of given minimum degree and girth

P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.

Original languageEnglish
Pages (from-to)55-60
Number of pages6
JournalDiscrete Mathematics
Volume200
Issue number1-3
Publication statusPublished - Apr 6 1999

Fingerprint

Cycle Length
Girth
Minimum Degree
Lower bound
Graph in graph theory

Keywords

  • Cycle lengths
  • Girth
  • Minimum degree
  • Predecessor

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Erdős, P., Faudree, R. J., Rousseau, C. C., & Schelp, R. H. (1999). The number of cycle lengths in graphs of given minimum degree and girth. Discrete Mathematics, 200(1-3), 55-60.

The number of cycle lengths in graphs of given minimum degree and girth. / Erdős, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H.

In: Discrete Mathematics, Vol. 200, No. 1-3, 06.04.1999, p. 55-60.

Research output: Contribution to journalArticle

Erdős, P, Faudree, RJ, Rousseau, CC & Schelp, RH 1999, 'The number of cycle lengths in graphs of given minimum degree and girth', Discrete Mathematics, vol. 200, no. 1-3, pp. 55-60.
Erdős P, Faudree RJ, Rousseau CC, Schelp RH. The number of cycle lengths in graphs of given minimum degree and girth. Discrete Mathematics. 1999 Apr 6;200(1-3):55-60.
Erdős, P. ; Faudree, R. J. ; Rousseau, C. C. ; Schelp, R. H. / The number of cycle lengths in graphs of given minimum degree and girth. In: Discrete Mathematics. 1999 ; Vol. 200, No. 1-3. pp. 55-60.
@article{298438dc80704439b217b5879485a523,
title = "The number of cycle lengths in graphs of given minimum degree and girth",
abstract = "This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.",
keywords = "Cycle lengths, Girth, Minimum degree, Predecessor",
author = "P. Erdős and Faudree, {R. J.} and Rousseau, {C. C.} and Schelp, {R. H.}",
year = "1999",
month = "4",
day = "6",
language = "English",
volume = "200",
pages = "55--60",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - The number of cycle lengths in graphs of given minimum degree and girth

AU - Erdős, P.

AU - Faudree, R. J.

AU - Rousseau, C. C.

AU - Schelp, R. H.

PY - 1999/4/6

Y1 - 1999/4/6

N2 - This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.

AB - This paper determines lower bounds on the number of different cycle lengths in a graph of given minimum degree k and girth g. The most general result gives a lower bound of ckg/8.

KW - Cycle lengths

KW - Girth

KW - Minimum degree

KW - Predecessor

UR - http://www.scopus.com/inward/record.url?scp=0347670974&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0347670974&partnerID=8YFLogxK

M3 - Article

VL - 200

SP - 55

EP - 60

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -