TY - JOUR

T1 - The Hausdorff dimension of the Smale-Williams solenoid with different contraction coefficients

AU - Simon, Károly

PY - 1997/1/1

Y1 - 1997/1/1

N2 - In this paper we prove that the Hausdorff dimension of the Smale-Williams solenoid Ā with different contraction coefficients λ, μ is given by the formula dimH(Ā) = 1 + lig2/log(1/max(λ,μ)). Further, for λ,μ < 1/8 we prove that the Hausdorff dimension of each angular section is equal to lig2/log(1/max(λ,μ)).

AB - In this paper we prove that the Hausdorff dimension of the Smale-Williams solenoid Ā with different contraction coefficients λ, μ is given by the formula dimH(Ā) = 1 + lig2/log(1/max(λ,μ)). Further, for λ,μ < 1/8 we prove that the Hausdorff dimension of each angular section is equal to lig2/log(1/max(λ,μ)).

UR - http://www.scopus.com/inward/record.url?scp=0040467589&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0040467589&partnerID=8YFLogxK

U2 - 10.1090/s0002-9939-97-03600-9

DO - 10.1090/s0002-9939-97-03600-9

M3 - Article

AN - SCOPUS:0040467589

VL - 125

SP - 1221

EP - 1228

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 4

ER -