The endothelial deprotection hypothesis for lupus pathogenesis: The dual role of C1q as a mediator of clearance and regulator of endothelial permeability

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.

Original languageEnglish
JournalF1000Research
Volume4
DOIs
Publication statusPublished - Jan 26 2015

Fingerprint

Systemic Lupus Erythematosus
Permeability
Autoimmunity
Blood Vessels
Debris
Complement C1q
Maintenance
Classical Complement Pathway
Autoantigens
Humoral Immunity
Life Expectancy
Innate Immunity
Molecules
Autoimmune Diseases
Extracellular Matrix
Endothelial cells
Disease Progression
Complement System Proteins
Endothelial Cells
Immunoglobulin G

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Cite this

@article{f7b653cfd1ee41fb9c480ebbbfbaec0f,
title = "The endothelial deprotection hypothesis for lupus pathogenesis: The dual role of C1q as a mediator of clearance and regulator of endothelial permeability",
abstract = "Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.",
author = "J. Prechl and L. Czirj{\'a}k",
year = "2015",
month = "1",
day = "26",
doi = "10.12688/f1000research.6075.1",
language = "English",
volume = "4",
journal = "F1000Research",
issn = "2046-1402",
publisher = "F1000 Research Ltd.",

}

TY - JOUR

T1 - The endothelial deprotection hypothesis for lupus pathogenesis

T2 - The dual role of C1q as a mediator of clearance and regulator of endothelial permeability

AU - Prechl, J.

AU - Czirják, L.

PY - 2015/1/26

Y1 - 2015/1/26

N2 - Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.

AB - Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial systemic autoimmune disease affecting several organs. SLE can start relatively early in life and results in impaired quality of life and shortened life expectancy because of a gradual disease progression leading to cardiovascular, renal and neoplastic disease. The basic mechanisms of the pathogenesis of the disease still remain to be clarified. It is clear that complement proteins play a key and complex role in the development of SLE. Complement component C1q has been known to be a fundamental component of lupus development, but most explanations focus on its role in apoptotic debris removal. Importantly, C1q was recently found to play a key role in the maintenance of vascular endothelial integrity. We suggest that apoptotic products, endothelial cells and extracellular matrix components, which display negatively charged moieties, compete for binding to molecules of the innate humoral immune response, like C1q. Genetic or acquired factors leading to an increased load of apoptotic cell debris and decrease or absence of C1q therefore interfere with the regulation of endothelial permeability and integrity. Furthermore, we suggest that lupus is the net result of an imbalance between the two functions of immune clearance and vascular endothelial integrity maintenance, an imbalance triggered and sustained by autoimmunity, which skews C1q consumption by IgG-mediated complement classical pathway activation on autoantigens. In this triangle of innate clearance, autoimmunity and endothelial integrity, C1q plays a central role. Hence, we interpret the pathogenesis of lupus by identifying three key components, namely innate immune clearance, autoimmunity and endothelial integrity and we establish a link between these components based on the protective role that innate clearance molecules play in endothelial renewal. By including the vasoprotective role of C1q in the interpretation of SLE development we attempt to provide novel explanations for the symptoms, organ damage, diagnostic and therapeutic difficulties of the disease.

UR - http://www.scopus.com/inward/record.url?scp=84931275474&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84931275474&partnerID=8YFLogxK

U2 - 10.12688/f1000research.6075.1

DO - 10.12688/f1000research.6075.1

M3 - Article

AN - SCOPUS:84931275474

VL - 4

JO - F1000Research

JF - F1000Research

SN - 2046-1402

ER -