The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations

Simon Van Vliet, Felix J H Hol, Tim Weenink, P. Galajda, Juan E. Keymer

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results: The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. Conclusions: We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal patterns. Furthermore, we showed that chemical interactions between two populations cause them to remain spatially segregated while they compete for habitat space. Finally, we observed that growth properties in bulk conditions correlate with the outcome of habitat colonization. Together, our data show the crucial roles of chemical interactions between populations and a culture's history in determining the outcome of habitat colonization.

Original languageEnglish
Article number116
JournalBMC Microbiology
Volume14
Issue number1
DOIs
Publication statusPublished - May 7 2014

Fingerprint

Ecosystem
History
Population
Escherichia coli
Equipment and Supplies
Population Dynamics
Microscopy
Soil
Demography

Keywords

  • Bacterial competition
  • Collective behavior
  • Habitat colonization
  • Microbes
  • Microfluidics
  • Spatially structured habitats

ASJC Scopus subject areas

  • Microbiology (medical)
  • Microbiology

Cite this

The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations. / Van Vliet, Simon; Hol, Felix J H; Weenink, Tim; Galajda, P.; Keymer, Juan E.

In: BMC Microbiology, Vol. 14, No. 1, 116, 07.05.2014.

Research output: Contribution to journalArticle

@article{f37eae0e6dd848879033238c6abeed4c,
title = "The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations",
abstract = "Background: Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results: The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. Conclusions: We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal patterns. Furthermore, we showed that chemical interactions between two populations cause them to remain spatially segregated while they compete for habitat space. Finally, we observed that growth properties in bulk conditions correlate with the outcome of habitat colonization. Together, our data show the crucial roles of chemical interactions between populations and a culture's history in determining the outcome of habitat colonization.",
keywords = "Bacterial competition, Collective behavior, Habitat colonization, Microbes, Microfluidics, Spatially structured habitats",
author = "{Van Vliet}, Simon and Hol, {Felix J H} and Tim Weenink and P. Galajda and Keymer, {Juan E.}",
year = "2014",
month = "5",
day = "7",
doi = "10.1186/1471-2180-14-116",
language = "English",
volume = "14",
journal = "BMC Microbiology",
issn = "1471-2180",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations

AU - Van Vliet, Simon

AU - Hol, Felix J H

AU - Weenink, Tim

AU - Galajda, P.

AU - Keymer, Juan E.

PY - 2014/5/7

Y1 - 2014/5/7

N2 - Background: Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results: The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. Conclusions: We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal patterns. Furthermore, we showed that chemical interactions between two populations cause them to remain spatially segregated while they compete for habitat space. Finally, we observed that growth properties in bulk conditions correlate with the outcome of habitat colonization. Together, our data show the crucial roles of chemical interactions between populations and a culture's history in determining the outcome of habitat colonization.

AB - Background: Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results: The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture's history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same -80°C frozen stock. Conclusions: We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal patterns. Furthermore, we showed that chemical interactions between two populations cause them to remain spatially segregated while they compete for habitat space. Finally, we observed that growth properties in bulk conditions correlate with the outcome of habitat colonization. Together, our data show the crucial roles of chemical interactions between populations and a culture's history in determining the outcome of habitat colonization.

KW - Bacterial competition

KW - Collective behavior

KW - Habitat colonization

KW - Microbes

KW - Microfluidics

KW - Spatially structured habitats

UR - http://www.scopus.com/inward/record.url?scp=84901585888&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901585888&partnerID=8YFLogxK

U2 - 10.1186/1471-2180-14-116

DO - 10.1186/1471-2180-14-116

M3 - Article

AN - SCOPUS:84901585888

VL - 14

JO - BMC Microbiology

JF - BMC Microbiology

SN - 1471-2180

IS - 1

M1 - 116

ER -