The effect of induction method on defibrillation threshold and ventricular fibrillation cycle length

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Introduction: Since no clinical data are available on the comparison of the "shock on T-wave" and "high frequency burst" ventricular fibrillation (VF) induction modes during defibrillation threshold (DFT) testing, we aimed to compare these two methods during implantable cardioverter defibrillator implantation. Methods: The DFT was determined with a step-down protocol using biphasic, anodal polarity (100%, 40%, 20% voltage control) shocks. Patients were randomized: VF was induced by 50 Hz burst in group B (n = 45) and T-wave shock in group T (n = 41). The DFT was defined as the lowest energy level that terminated VF; confirmed DFT (DFTc) was defined as the minimal energy level that consecutively terminated VF twice. Success rate of DFTc was calculated during an intraindividual test for the alternate induction method. Results: A total of 546 episodes of VF were induced: n = 278 (B) vs n = 268 (T). Incidence of VT during inductions was 9.9% (B) vs 2.7% (T), P <0.05. Neither the DFT, 8.8 ± 4.0 J (B) vs 9.7 ± 4.2 J (T), nor the DFTc, 10.6 ± 5.1 J (B) vs 10.8 ± 4.2 J (T), proved to be significantly different. A significant correlation was found between VF cycle length (CL) and the concomitant DFT (r = 0.298, P <0.05) in group T only. Subgroup analysis of patients under chronic class III antiarrhythmic treatment showed no increase of the DFT in either group and significantly lower incidence of VT induction in group T regardless of antiarrhythmic treatment. Conclusion: The DFT and the VFCL proved to be independent of the VF induction method. The T-wave shock was more unlikely to induce VT during DFT testing. These results suggest that both methods are reliable in DFT determination, though T-wave shock application is a more reliable method for DFT testing.

Original languageEnglish
Pages (from-to)377-381
Number of pages5
JournalJournal of Cardiovascular Electrophysiology
Volume17
Issue number4
DOIs
Publication statusPublished - Apr 2006

Fingerprint

Ventricular Fibrillation
Shock
Radio Waves
Implantable Defibrillators
Incidence
Therapeutics

Keywords

  • Burst
  • Defibrillation threshold testing
  • Implantable cardioverter defibrillator
  • T-wave shock
  • Ventricular fibrillation

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology

Cite this

@article{2da1ab3a13854a03848f159fecf160c4,
title = "The effect of induction method on defibrillation threshold and ventricular fibrillation cycle length",
abstract = "Introduction: Since no clinical data are available on the comparison of the {"}shock on T-wave{"} and {"}high frequency burst{"} ventricular fibrillation (VF) induction modes during defibrillation threshold (DFT) testing, we aimed to compare these two methods during implantable cardioverter defibrillator implantation. Methods: The DFT was determined with a step-down protocol using biphasic, anodal polarity (100{\%}, 40{\%}, 20{\%} voltage control) shocks. Patients were randomized: VF was induced by 50 Hz burst in group B (n = 45) and T-wave shock in group T (n = 41). The DFT was defined as the lowest energy level that terminated VF; confirmed DFT (DFTc) was defined as the minimal energy level that consecutively terminated VF twice. Success rate of DFTc was calculated during an intraindividual test for the alternate induction method. Results: A total of 546 episodes of VF were induced: n = 278 (B) vs n = 268 (T). Incidence of VT during inductions was 9.9{\%} (B) vs 2.7{\%} (T), P <0.05. Neither the DFT, 8.8 ± 4.0 J (B) vs 9.7 ± 4.2 J (T), nor the DFTc, 10.6 ± 5.1 J (B) vs 10.8 ± 4.2 J (T), proved to be significantly different. A significant correlation was found between VF cycle length (CL) and the concomitant DFT (r = 0.298, P <0.05) in group T only. Subgroup analysis of patients under chronic class III antiarrhythmic treatment showed no increase of the DFT in either group and significantly lower incidence of VT induction in group T regardless of antiarrhythmic treatment. Conclusion: The DFT and the VFCL proved to be independent of the VF induction method. The T-wave shock was more unlikely to induce VT during DFT testing. These results suggest that both methods are reliable in DFT determination, though T-wave shock application is a more reliable method for DFT testing.",
keywords = "Burst, Defibrillation threshold testing, Implantable cardioverter defibrillator, T-wave shock, Ventricular fibrillation",
author = "E. Zima and Mih{\'a}ly Gergely and P. So{\'o}s and L. Gell{\'e}r and A. Nemes and G. Acs{\'a}dy and B. Merkely",
year = "2006",
month = "4",
doi = "10.1111/j.1540-8167.2006.00352.x",
language = "English",
volume = "17",
pages = "377--381",
journal = "Journal of Cardiovascular Electrophysiology",
issn = "1045-3873",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - The effect of induction method on defibrillation threshold and ventricular fibrillation cycle length

AU - Zima, E.

AU - Gergely, Mihály

AU - Soós, P.

AU - Gellér, L.

AU - Nemes, A.

AU - Acsády, G.

AU - Merkely, B.

PY - 2006/4

Y1 - 2006/4

N2 - Introduction: Since no clinical data are available on the comparison of the "shock on T-wave" and "high frequency burst" ventricular fibrillation (VF) induction modes during defibrillation threshold (DFT) testing, we aimed to compare these two methods during implantable cardioverter defibrillator implantation. Methods: The DFT was determined with a step-down protocol using biphasic, anodal polarity (100%, 40%, 20% voltage control) shocks. Patients were randomized: VF was induced by 50 Hz burst in group B (n = 45) and T-wave shock in group T (n = 41). The DFT was defined as the lowest energy level that terminated VF; confirmed DFT (DFTc) was defined as the minimal energy level that consecutively terminated VF twice. Success rate of DFTc was calculated during an intraindividual test for the alternate induction method. Results: A total of 546 episodes of VF were induced: n = 278 (B) vs n = 268 (T). Incidence of VT during inductions was 9.9% (B) vs 2.7% (T), P <0.05. Neither the DFT, 8.8 ± 4.0 J (B) vs 9.7 ± 4.2 J (T), nor the DFTc, 10.6 ± 5.1 J (B) vs 10.8 ± 4.2 J (T), proved to be significantly different. A significant correlation was found between VF cycle length (CL) and the concomitant DFT (r = 0.298, P <0.05) in group T only. Subgroup analysis of patients under chronic class III antiarrhythmic treatment showed no increase of the DFT in either group and significantly lower incidence of VT induction in group T regardless of antiarrhythmic treatment. Conclusion: The DFT and the VFCL proved to be independent of the VF induction method. The T-wave shock was more unlikely to induce VT during DFT testing. These results suggest that both methods are reliable in DFT determination, though T-wave shock application is a more reliable method for DFT testing.

AB - Introduction: Since no clinical data are available on the comparison of the "shock on T-wave" and "high frequency burst" ventricular fibrillation (VF) induction modes during defibrillation threshold (DFT) testing, we aimed to compare these two methods during implantable cardioverter defibrillator implantation. Methods: The DFT was determined with a step-down protocol using biphasic, anodal polarity (100%, 40%, 20% voltage control) shocks. Patients were randomized: VF was induced by 50 Hz burst in group B (n = 45) and T-wave shock in group T (n = 41). The DFT was defined as the lowest energy level that terminated VF; confirmed DFT (DFTc) was defined as the minimal energy level that consecutively terminated VF twice. Success rate of DFTc was calculated during an intraindividual test for the alternate induction method. Results: A total of 546 episodes of VF were induced: n = 278 (B) vs n = 268 (T). Incidence of VT during inductions was 9.9% (B) vs 2.7% (T), P <0.05. Neither the DFT, 8.8 ± 4.0 J (B) vs 9.7 ± 4.2 J (T), nor the DFTc, 10.6 ± 5.1 J (B) vs 10.8 ± 4.2 J (T), proved to be significantly different. A significant correlation was found between VF cycle length (CL) and the concomitant DFT (r = 0.298, P <0.05) in group T only. Subgroup analysis of patients under chronic class III antiarrhythmic treatment showed no increase of the DFT in either group and significantly lower incidence of VT induction in group T regardless of antiarrhythmic treatment. Conclusion: The DFT and the VFCL proved to be independent of the VF induction method. The T-wave shock was more unlikely to induce VT during DFT testing. These results suggest that both methods are reliable in DFT determination, though T-wave shock application is a more reliable method for DFT testing.

KW - Burst

KW - Defibrillation threshold testing

KW - Implantable cardioverter defibrillator

KW - T-wave shock

KW - Ventricular fibrillation

UR - http://www.scopus.com/inward/record.url?scp=33645326870&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645326870&partnerID=8YFLogxK

U2 - 10.1111/j.1540-8167.2006.00352.x

DO - 10.1111/j.1540-8167.2006.00352.x

M3 - Article

C2 - 16643358

AN - SCOPUS:33645326870

VL - 17

SP - 377

EP - 381

JO - Journal of Cardiovascular Electrophysiology

JF - Journal of Cardiovascular Electrophysiology

SN - 1045-3873

IS - 4

ER -