The development of high speed virtual milling test

Akos Miklos, Denes Takacs, Richard Wohlfart, Gabor Porempovics, Tamas G. Molnar, Daniel Bachrathy, Andras Toth, Gabor Stepan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

The concept of a hardware-in-the-loop experiment for high speed milling is introduced in this paper. The tool-workpiece interaction is virtually implemented in the experiment while the milling machine with the spindle is used as real element. In this paper, the basic components of the experiment are presented, namely, a contactless displacement sensor, a computational algorithm of the cutting force and a contactless electromagnetic actuator are discussed. Experiments on the prototype of the electromagnetic actuator are also shown to illustrate the potential of the concept. A feasibility study of the hardware-in-the-loop experiment is given, where the effect of the time delay included in the experiment is investigated.

Original languageEnglish
Title of host publicationMechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791858288
DOIs
Publication statusPublished - 2017
EventASME 2017 Dynamic Systems and Control Conference, DSCC 2017 - Tysons, United States
Duration: Oct 11 2017Oct 13 2017

Publication series

NameASME 2017 Dynamic Systems and Control Conference, DSCC 2017
Volume2

Other

OtherASME 2017 Dynamic Systems and Control Conference, DSCC 2017
CountryUnited States
CityTysons
Period10/11/1710/13/17

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'The development of high speed virtual milling test'. Together they form a unique fingerprint.

  • Cite this

    Miklos, A., Takacs, D., Wohlfart, R., Porempovics, G., Molnar, T. G., Bachrathy, D., Toth, A., & Stepan, G. (2017). The development of high speed virtual milling test. In Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications (ASME 2017 Dynamic Systems and Control Conference, DSCC 2017; Vol. 2). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2017-5217