The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs

V. Ramesh, M. Gyenes, L. Patthy, M. Llinas

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The isolated kringle 4 domain of human plasminogen has been compared with homologous structures from bovine and porcine sources, both free and in the presence of the ligand 6-aminohexanoic acid, by two-dimensional 1H-NMR spectroscopies at 300 MHz and 600 MHz. The chemical-shift-correlated, spin-echo-correlated, and double-quantum-correlated aromatic spectra of the three proteins reveal that the globular conformation of the fourth kringle is closely maintained throughout the set of homologs. Direct comparison shows that the three conserved Trp residues (at sites 25, 62 and 72) which exhibit highly non-degenerate subspectra, find themselves in similar intramolecular environments. In particular, proton Overhauser experiments reveal that the close steric interaction between the Trp-II (Trp62 or Trp25) indole group and the aromatic ring at site 74 (Tyr74 or Phe74) is strictly preserved. This feature forces the kringle inner loop, closed by the Cys51-Cys75 link, to fold back onto itself so as to place the site 74 residue proximal to the Cys22-Cys63 bridge. Single-residue substitutions enable unambiguous assignments of His-I to His3, Tyr-III to Tyr41 and Tyr-IV to Tyr74. From this direct evidence, comparison with the kringle 1 spectrum, and the previously reported chemical modification of Tyr-II (Tyr50) [Trexler M., Banyai L., Patthy L., Pluck N.D. & Williams R.J.P. (1985) Eur. J. Biochem. 152, 439-446], Tyr-I and Tyr-V (the latter, an immobile ring on the 600-MHz time scale) could be assigned to Tyr2 and Tyr9, respectively. Since Trp-III has previously been assigned to Trp72 at the lysine-binding site, the present study completes the assignment of 10 out of 12 aromatic spin systems in the kringle 4 1H-NMR spectrum; the only ambiguity which remains concerns the Trp-I and Trp-II indole spin systems, which are totally identified but as yet only tentatively assigned to Trp25 and Trp62, respectively.

Original languageEnglish
Pages (from-to)581-595
Number of pages15
JournalEuropean Journal of Biochemistry
Volume159
Issue number3
Publication statusPublished - 1986

Fingerprint

Kringles
Plasminogen
Swine
Nuclear magnetic resonance
Aminocaproic Acid
Chemical modification
Chemical shift
Nuclear magnetic resonance spectroscopy
Lysine
Conformations
Protons
Substitution reactions
Binding Sites
Ligands
Proteins
Experiments
Magnetic Resonance Spectroscopy
indole
Proton Magnetic Resonance Spectroscopy

ASJC Scopus subject areas

  • Biochemistry

Cite this

The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs. / Ramesh, V.; Gyenes, M.; Patthy, L.; Llinas, M.

In: European Journal of Biochemistry, Vol. 159, No. 3, 1986, p. 581-595.

Research output: Contribution to journalArticle

@article{b8dc92e3e2774ee8b4f4af71e86bda7a,
title = "The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs",
abstract = "The isolated kringle 4 domain of human plasminogen has been compared with homologous structures from bovine and porcine sources, both free and in the presence of the ligand 6-aminohexanoic acid, by two-dimensional 1H-NMR spectroscopies at 300 MHz and 600 MHz. The chemical-shift-correlated, spin-echo-correlated, and double-quantum-correlated aromatic spectra of the three proteins reveal that the globular conformation of the fourth kringle is closely maintained throughout the set of homologs. Direct comparison shows that the three conserved Trp residues (at sites 25, 62 and 72) which exhibit highly non-degenerate subspectra, find themselves in similar intramolecular environments. In particular, proton Overhauser experiments reveal that the close steric interaction between the Trp-II (Trp62 or Trp25) indole group and the aromatic ring at site 74 (Tyr74 or Phe74) is strictly preserved. This feature forces the kringle inner loop, closed by the Cys51-Cys75 link, to fold back onto itself so as to place the site 74 residue proximal to the Cys22-Cys63 bridge. Single-residue substitutions enable unambiguous assignments of His-I to His3, Tyr-III to Tyr41 and Tyr-IV to Tyr74. From this direct evidence, comparison with the kringle 1 spectrum, and the previously reported chemical modification of Tyr-II (Tyr50) [Trexler M., Banyai L., Patthy L., Pluck N.D. & Williams R.J.P. (1985) Eur. J. Biochem. 152, 439-446], Tyr-I and Tyr-V (the latter, an immobile ring on the 600-MHz time scale) could be assigned to Tyr2 and Tyr9, respectively. Since Trp-III has previously been assigned to Trp72 at the lysine-binding site, the present study completes the assignment of 10 out of 12 aromatic spin systems in the kringle 4 1H-NMR spectrum; the only ambiguity which remains concerns the Trp-I and Trp-II indole spin systems, which are totally identified but as yet only tentatively assigned to Trp25 and Trp62, respectively.",
author = "V. Ramesh and M. Gyenes and L. Patthy and M. Llinas",
year = "1986",
language = "English",
volume = "159",
pages = "581--595",
journal = "FEBS Journal",
issn = "1742-464X",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs

AU - Ramesh, V.

AU - Gyenes, M.

AU - Patthy, L.

AU - Llinas, M.

PY - 1986

Y1 - 1986

N2 - The isolated kringle 4 domain of human plasminogen has been compared with homologous structures from bovine and porcine sources, both free and in the presence of the ligand 6-aminohexanoic acid, by two-dimensional 1H-NMR spectroscopies at 300 MHz and 600 MHz. The chemical-shift-correlated, spin-echo-correlated, and double-quantum-correlated aromatic spectra of the three proteins reveal that the globular conformation of the fourth kringle is closely maintained throughout the set of homologs. Direct comparison shows that the three conserved Trp residues (at sites 25, 62 and 72) which exhibit highly non-degenerate subspectra, find themselves in similar intramolecular environments. In particular, proton Overhauser experiments reveal that the close steric interaction between the Trp-II (Trp62 or Trp25) indole group and the aromatic ring at site 74 (Tyr74 or Phe74) is strictly preserved. This feature forces the kringle inner loop, closed by the Cys51-Cys75 link, to fold back onto itself so as to place the site 74 residue proximal to the Cys22-Cys63 bridge. Single-residue substitutions enable unambiguous assignments of His-I to His3, Tyr-III to Tyr41 and Tyr-IV to Tyr74. From this direct evidence, comparison with the kringle 1 spectrum, and the previously reported chemical modification of Tyr-II (Tyr50) [Trexler M., Banyai L., Patthy L., Pluck N.D. & Williams R.J.P. (1985) Eur. J. Biochem. 152, 439-446], Tyr-I and Tyr-V (the latter, an immobile ring on the 600-MHz time scale) could be assigned to Tyr2 and Tyr9, respectively. Since Trp-III has previously been assigned to Trp72 at the lysine-binding site, the present study completes the assignment of 10 out of 12 aromatic spin systems in the kringle 4 1H-NMR spectrum; the only ambiguity which remains concerns the Trp-I and Trp-II indole spin systems, which are totally identified but as yet only tentatively assigned to Trp25 and Trp62, respectively.

AB - The isolated kringle 4 domain of human plasminogen has been compared with homologous structures from bovine and porcine sources, both free and in the presence of the ligand 6-aminohexanoic acid, by two-dimensional 1H-NMR spectroscopies at 300 MHz and 600 MHz. The chemical-shift-correlated, spin-echo-correlated, and double-quantum-correlated aromatic spectra of the three proteins reveal that the globular conformation of the fourth kringle is closely maintained throughout the set of homologs. Direct comparison shows that the three conserved Trp residues (at sites 25, 62 and 72) which exhibit highly non-degenerate subspectra, find themselves in similar intramolecular environments. In particular, proton Overhauser experiments reveal that the close steric interaction between the Trp-II (Trp62 or Trp25) indole group and the aromatic ring at site 74 (Tyr74 or Phe74) is strictly preserved. This feature forces the kringle inner loop, closed by the Cys51-Cys75 link, to fold back onto itself so as to place the site 74 residue proximal to the Cys22-Cys63 bridge. Single-residue substitutions enable unambiguous assignments of His-I to His3, Tyr-III to Tyr41 and Tyr-IV to Tyr74. From this direct evidence, comparison with the kringle 1 spectrum, and the previously reported chemical modification of Tyr-II (Tyr50) [Trexler M., Banyai L., Patthy L., Pluck N.D. & Williams R.J.P. (1985) Eur. J. Biochem. 152, 439-446], Tyr-I and Tyr-V (the latter, an immobile ring on the 600-MHz time scale) could be assigned to Tyr2 and Tyr9, respectively. Since Trp-III has previously been assigned to Trp72 at the lysine-binding site, the present study completes the assignment of 10 out of 12 aromatic spin systems in the kringle 4 1H-NMR spectrum; the only ambiguity which remains concerns the Trp-I and Trp-II indole spin systems, which are totally identified but as yet only tentatively assigned to Trp25 and Trp62, respectively.

UR - http://www.scopus.com/inward/record.url?scp=0022555681&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022555681&partnerID=8YFLogxK

M3 - Article

C2 - 3019697

AN - SCOPUS:0022555681

VL - 159

SP - 581

EP - 595

JO - FEBS Journal

JF - FEBS Journal

SN - 1742-464X

IS - 3

ER -