Tensor-product representation of qubits and tensor realization of one-qubit operators

Peter Adam, Vladimir A. Andreev, Jozsef Janszky, Margarita A. Man'Ko, Vladimir I. Man'Ko

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We consider one-particle spin states. We show that all the information contained in the state can be written in an equivalent form using three completely decohered mixed states. The density matrix of such a system has the form of tensor product of three diagonal matrices. The unitary operators defined in the space of one-particle spin states are represented by some transformation of tensor products of diagonal matrices. We determine the explicit form of the unitary transformations acting on the representing three-qubit system and corresponding basic operators acting in the space of the initial qubit states.

Original languageEnglish
Article number014001
JournalPhysica Scripta
Volume87
Issue numberT153
DOIs
Publication statusPublished - Mar 1 2013

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Mathematical Physics
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Tensor-product representation of qubits and tensor realization of one-qubit operators'. Together they form a unique fingerprint.

  • Cite this