Synthesis and supramolecular assembly of fluorinated biogenic amine recognition host polymers

Ervin Kovács, János Deme, Gábor Turczel, Tibor Nagy, Vajk Farkas, László Trif, Sándor Kéki, Péter Huszthy, Robert Tuba

Research output: Contribution to journalArticle

Abstract

Copolymers containing hydroxyl (i.e. vinyl alcohol, VA) or fluorine functionalities are synthetic macromolecules having prominent biomedical applications. The concentration of hydroxyl groups along the polymer chain controls the polymer polarity. Moreover, the introduction of perfluorinated organic moieties via the OH functionalities may lead to macromolecules having potential magnetic resonance imaging (MRI) active properties. The ring-opening metathesis polymerization (ROMP) reaction using well-defined ruthenium-catalyzed systems is one of the most promising synthetic tools to fabricate such polymers. Co-polymerization of norbornene grafted pyridino-18-crown-6 ether (7) with fluorine-functionalized norbornenes (10 and 11) results in polymers bearing host molecular moieties. It has been demonstrated that the complexation of these host copolymers with biogenic amines including dopamine hydrochloride (12) and l-alanyl-l-lysine dipeptide hydrochloride (13) is straightforward. Based on the 1H NMR investigation of the 7 and 12 complexation, an equilibrium constant of logK = 4.3 ± 0.6 could be calculated. The in situ1H NMR investigations have revealed that the complex formation of 13 with monomer 7 and perfluorinated copolymer cp-7-10 takes place via both the lysine -NH3+ and the alanine -NH3+ moieties. However, in the case of homopolymer poly-7, the lysine-NH3+ group coordination was observed exclusively. According to theoretical calculations, molecular switching of the crown ether structure of both the 7 monomer and its cp-7-10 copolymer were observed from 90 degrees bent to planar structure upon -NH3+ ion coordination.

Original languageEnglish
Pages (from-to)5626-5634
Number of pages9
JournalPolymer Chemistry
Volume10
Issue number41
DOIs
Publication statusPublished - Nov 7 2019

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Polymers and Plastics
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Synthesis and supramolecular assembly of fluorinated biogenic amine recognition host polymers'. Together they form a unique fingerprint.

  • Cite this

    Kovács, E., Deme, J., Turczel, G., Nagy, T., Farkas, V., Trif, L., Kéki, S., Huszthy, P., & Tuba, R. (2019). Synthesis and supramolecular assembly of fluorinated biogenic amine recognition host polymers. Polymer Chemistry, 10(41), 5626-5634. https://doi.org/10.1039/c9py00929a