Symmetry, optima and bifurcations in structural design

Péter László Várkonyi, G. Domokos

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Motivated by optimization problems in structural engineering, we study the critical points of symmetric, 'reflected', one-parameter family of potentials U(p, x) = max (f(p,x), f(p, -x)), yielding modest generalizations of classical bifurcations, predicted by elementary catastrophe theory. One such generalization is the 'five-branch pitchfork', where the symmetric optimum persists beyond the critical parameter value. Our theory may help to explain why symmetrical structures are often optimal.

Original languageEnglish
Pages (from-to)47-58
Number of pages12
JournalNonlinear Dynamics
Volume43
Issue number1-2
DOIs
Publication statusPublished - Jan 2006

Fingerprint

Bifurcation (mathematics)
Structural Design
Structural design
Bifurcation
Catastrophe theory
Symmetry
Critical point
Branch
Optimization Problem
Engineering
Generalization
Family

Keywords

  • Bifurcation
  • Catastrophe theory
  • Reflection symmetry
  • Structural optimization

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials
  • Computational Mechanics

Cite this

Symmetry, optima and bifurcations in structural design. / Várkonyi, Péter László; Domokos, G.

In: Nonlinear Dynamics, Vol. 43, No. 1-2, 01.2006, p. 47-58.

Research output: Contribution to journalArticle

Várkonyi, Péter László ; Domokos, G. / Symmetry, optima and bifurcations in structural design. In: Nonlinear Dynamics. 2006 ; Vol. 43, No. 1-2. pp. 47-58.
@article{3520380d3f8343a48c7cffac6d13e47f,
title = "Symmetry, optima and bifurcations in structural design",
abstract = "Motivated by optimization problems in structural engineering, we study the critical points of symmetric, 'reflected', one-parameter family of potentials U(p, x) = max (f(p,x), f(p, -x)), yielding modest generalizations of classical bifurcations, predicted by elementary catastrophe theory. One such generalization is the 'five-branch pitchfork', where the symmetric optimum persists beyond the critical parameter value. Our theory may help to explain why symmetrical structures are often optimal.",
keywords = "Bifurcation, Catastrophe theory, Reflection symmetry, Structural optimization",
author = "V{\'a}rkonyi, {P{\'e}ter L{\'a}szl{\'o}} and G. Domokos",
year = "2006",
month = "1",
doi = "10.1007/s11071-006-0749-7",
language = "English",
volume = "43",
pages = "47--58",
journal = "Nonlinear Dynamics",
issn = "0924-090X",
publisher = "Springer Netherlands",
number = "1-2",

}

TY - JOUR

T1 - Symmetry, optima and bifurcations in structural design

AU - Várkonyi, Péter László

AU - Domokos, G.

PY - 2006/1

Y1 - 2006/1

N2 - Motivated by optimization problems in structural engineering, we study the critical points of symmetric, 'reflected', one-parameter family of potentials U(p, x) = max (f(p,x), f(p, -x)), yielding modest generalizations of classical bifurcations, predicted by elementary catastrophe theory. One such generalization is the 'five-branch pitchfork', where the symmetric optimum persists beyond the critical parameter value. Our theory may help to explain why symmetrical structures are often optimal.

AB - Motivated by optimization problems in structural engineering, we study the critical points of symmetric, 'reflected', one-parameter family of potentials U(p, x) = max (f(p,x), f(p, -x)), yielding modest generalizations of classical bifurcations, predicted by elementary catastrophe theory. One such generalization is the 'five-branch pitchfork', where the symmetric optimum persists beyond the critical parameter value. Our theory may help to explain why symmetrical structures are often optimal.

KW - Bifurcation

KW - Catastrophe theory

KW - Reflection symmetry

KW - Structural optimization

UR - http://www.scopus.com/inward/record.url?scp=31444455345&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=31444455345&partnerID=8YFLogxK

U2 - 10.1007/s11071-006-0749-7

DO - 10.1007/s11071-006-0749-7

M3 - Article

AN - SCOPUS:31444455345

VL - 43

SP - 47

EP - 58

JO - Nonlinear Dynamics

JF - Nonlinear Dynamics

SN - 0924-090X

IS - 1-2

ER -