Structure end function of the serine-protease subcomponents of C1: Protein engineering studies

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Our protein engineering studies on human C1r and C1s revealed important characteristics of the individual domains of these multidomain serine-proteases, and supplied evidence about the cooperation of the domains to create binding sites, and to control the activation process. We expressed the recombinant subcomponents in the baculovirus-insect cell system and checked the biological activity. Deletions and point mutants of C1r were constructed and C1r-C1s chimeras were also produced. Our deletion mutants demonstrated that the N-terminal CUB domain and the EGF-like domain of C1r together are responsible for the calcium dependent C1r-C1s interaction. It seems very likely that these two modules form the calcium-binding site of the C1r α-fragment and participate in the tetramer formation. The deletion mutants also demonstrated that the N-terminal region of the C1r molecule contains essential elements involved in the control of activation of the serine-protease module. The substrate specificity of the serine-protease is also determined by the five N-terminal noncatalytic domain of C1r/C1s chimera, which contains the catalytic domain of C1s preceded by the N-terminal region of C1r, could replace the C1r in the hemolytically active C1 complex. The C1s/C1r chimera, in which the a-fragment of the C1r was replaced for that of the C1s exibits both C1r- and C1s-like characteristics. We stabilized the zymogen form of human C1r by mutating the Arg(463)-Ile(464) bond. Using our stable zymogen C1r we showed that one active C1r in the C1 complex is sufficient for the full activity of the entire complex. Further experiment with this mutant could provide us with important information about the structure of the C1 complex.

Original languageEnglish
Pages (from-to)317-326
Number of pages10
JournalImmunobiology
Volume199
Issue number2
Publication statusPublished - 1998

Fingerprint

Protein Engineering
Serine Proteases
Enzyme Precursors
Binding Sites
Calcium
Baculoviridae
Substrate Specificity
Epidermal Growth Factor
Insects
Catalytic Domain
protease C1

ASJC Scopus subject areas

  • Immunology

Cite this

Structure end function of the serine-protease subcomponents of C1 : Protein engineering studies. / Gál, P.; Závodszky, P.

In: Immunobiology, Vol. 199, No. 2, 1998, p. 317-326.

Research output: Contribution to journalArticle

@article{1bcb9d19485a407fa092469bf5b5f114,
title = "Structure end function of the serine-protease subcomponents of C1: Protein engineering studies",
abstract = "Our protein engineering studies on human C1r and C1s revealed important characteristics of the individual domains of these multidomain serine-proteases, and supplied evidence about the cooperation of the domains to create binding sites, and to control the activation process. We expressed the recombinant subcomponents in the baculovirus-insect cell system and checked the biological activity. Deletions and point mutants of C1r were constructed and C1r-C1s chimeras were also produced. Our deletion mutants demonstrated that the N-terminal CUB domain and the EGF-like domain of C1r together are responsible for the calcium dependent C1r-C1s interaction. It seems very likely that these two modules form the calcium-binding site of the C1r α-fragment and participate in the tetramer formation. The deletion mutants also demonstrated that the N-terminal region of the C1r molecule contains essential elements involved in the control of activation of the serine-protease module. The substrate specificity of the serine-protease is also determined by the five N-terminal noncatalytic domain of C1r/C1s chimera, which contains the catalytic domain of C1s preceded by the N-terminal region of C1r, could replace the C1r in the hemolytically active C1 complex. The C1s/C1r chimera, in which the a-fragment of the C1r was replaced for that of the C1s exibits both C1r- and C1s-like characteristics. We stabilized the zymogen form of human C1r by mutating the Arg(463)-Ile(464) bond. Using our stable zymogen C1r we showed that one active C1r in the C1 complex is sufficient for the full activity of the entire complex. Further experiment with this mutant could provide us with important information about the structure of the C1 complex.",
author = "P. G{\'a}l and P. Z{\'a}vodszky",
year = "1998",
language = "English",
volume = "199",
pages = "317--326",
journal = "Immunobiology",
issn = "0171-2985",
publisher = "Urban und Fischer Verlag GmbH und Co. KG",
number = "2",

}

TY - JOUR

T1 - Structure end function of the serine-protease subcomponents of C1

T2 - Protein engineering studies

AU - Gál, P.

AU - Závodszky, P.

PY - 1998

Y1 - 1998

N2 - Our protein engineering studies on human C1r and C1s revealed important characteristics of the individual domains of these multidomain serine-proteases, and supplied evidence about the cooperation of the domains to create binding sites, and to control the activation process. We expressed the recombinant subcomponents in the baculovirus-insect cell system and checked the biological activity. Deletions and point mutants of C1r were constructed and C1r-C1s chimeras were also produced. Our deletion mutants demonstrated that the N-terminal CUB domain and the EGF-like domain of C1r together are responsible for the calcium dependent C1r-C1s interaction. It seems very likely that these two modules form the calcium-binding site of the C1r α-fragment and participate in the tetramer formation. The deletion mutants also demonstrated that the N-terminal region of the C1r molecule contains essential elements involved in the control of activation of the serine-protease module. The substrate specificity of the serine-protease is also determined by the five N-terminal noncatalytic domain of C1r/C1s chimera, which contains the catalytic domain of C1s preceded by the N-terminal region of C1r, could replace the C1r in the hemolytically active C1 complex. The C1s/C1r chimera, in which the a-fragment of the C1r was replaced for that of the C1s exibits both C1r- and C1s-like characteristics. We stabilized the zymogen form of human C1r by mutating the Arg(463)-Ile(464) bond. Using our stable zymogen C1r we showed that one active C1r in the C1 complex is sufficient for the full activity of the entire complex. Further experiment with this mutant could provide us with important information about the structure of the C1 complex.

AB - Our protein engineering studies on human C1r and C1s revealed important characteristics of the individual domains of these multidomain serine-proteases, and supplied evidence about the cooperation of the domains to create binding sites, and to control the activation process. We expressed the recombinant subcomponents in the baculovirus-insect cell system and checked the biological activity. Deletions and point mutants of C1r were constructed and C1r-C1s chimeras were also produced. Our deletion mutants demonstrated that the N-terminal CUB domain and the EGF-like domain of C1r together are responsible for the calcium dependent C1r-C1s interaction. It seems very likely that these two modules form the calcium-binding site of the C1r α-fragment and participate in the tetramer formation. The deletion mutants also demonstrated that the N-terminal region of the C1r molecule contains essential elements involved in the control of activation of the serine-protease module. The substrate specificity of the serine-protease is also determined by the five N-terminal noncatalytic domain of C1r/C1s chimera, which contains the catalytic domain of C1s preceded by the N-terminal region of C1r, could replace the C1r in the hemolytically active C1 complex. The C1s/C1r chimera, in which the a-fragment of the C1r was replaced for that of the C1s exibits both C1r- and C1s-like characteristics. We stabilized the zymogen form of human C1r by mutating the Arg(463)-Ile(464) bond. Using our stable zymogen C1r we showed that one active C1r in the C1 complex is sufficient for the full activity of the entire complex. Further experiment with this mutant could provide us with important information about the structure of the C1 complex.

UR - http://www.scopus.com/inward/record.url?scp=0031593752&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031593752&partnerID=8YFLogxK

M3 - Article

C2 - 9777415

AN - SCOPUS:0031593752

VL - 199

SP - 317

EP - 326

JO - Immunobiology

JF - Immunobiology

SN - 0171-2985

IS - 2

ER -