Structure and magnetic properties of nanocrystalline soft ferromagnets

Research output: Contribution to journalArticle

19 Citations (Scopus)


The structure and magnetic properties of soft magnetic nanocrystalline composites crystallised from amorphous ribbons are reviewed. The Fe-Early Transition Metal-Boron (Nanoperm-type) nanostructures are discussed in details and compared to the Si containing (Finemet) alloys. The nanocrystallization process was studied by calorimetry; the spatial dimension, the composition and the relative fraction of the bcc and the residual amorphous phases were investigated by X-ray diffraction and Mössbauer spectroscopy. A small fraction of Fe atoms (about 4%) was found which cannot be assigned either to the residual amorphous or to the bcc phase. It is suggested that the magnetic anisotropy of the bcc phase is decreased due to the dissolved Zr and B impurities. The Curie point and Fe atomic moments in the residual amorphous tissue are determined and compared to that of a macrosized amorphous phase of similar composition. The observed deviations do not scale with the average characteristic size of the amorphous phase and thus cannot be explained in the framework of the existing models. Magnetic dipolar coupling and tensile stresses between the grains of the different phases are suggested for explaining the soft magnetic behaviour of the nanostructures.

Original languageEnglish
Pages (from-to)181-219
Number of pages39
JournalHyperfine Interactions
Issue number1-4
Publication statusPublished - Dec 1 2000

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Nuclear and High Energy Physics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Structure and magnetic properties of nanocrystalline soft ferromagnets'. Together they form a unique fingerprint.

  • Cite this