Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by dual-target magnetron sputtering

J. Birch, M. Severin, U. Wahlström, Y. Yamamoto, G. Radnoczi, R. Riklund, J. E. Sundgren, L. R. Wallenberg

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

A class of quasiperiodic superlattice structures, which can be generated by the concurrent inflation rule AmB and A (where m=positive integer), has been studied both theoretically and experimentally. Given that the ratios between the thicknesses of the two superlattice building blocks, A and B, are chosen to be (m)=[m+(m2+4)1/2]/2 (known as the precious means), then the x-ray- and electron-diffraction peak positions are analytically found to be located at the wave vectors q=2-1r[(m)]k, where r and k are integers and is an average superlattice wavelength. The analytically obtained results have been compared to experimental results from single-crystalline Mo/V superlattice structures, generated with m=1, 2, and 3. The superlattices were grown by dual-target dc-magnetron sputtering on MgO(001) substrates kept at 700°C. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) showed that the analytical model mentioned above predicts the peak positions of the experimental XRD and SAED spectra with a very high accuracy. Furthermore, numerical calculations of the diffraction intensities based on a kinematical model of diffraction showed good agreement with the experimental data for all three cases. In addition to a direct verification of the quasiperiodic modulation, both conventional and high-resolution cross-sectional transmission electron microscopy (XTEM) showed that the superlattices are of high crystalline quality with sharp interfaces. Based on lattice resolution images, the width of the interfaces was determined to be less than two (002) lattice-plane spacings (0.31 nm).

Original languageEnglish
Pages (from-to)10398-10407
Number of pages10
JournalPhysical Review B
Volume41
Issue number15
DOIs
Publication statusPublished - Jan 1 1990

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by dual-target magnetron sputtering'. Together they form a unique fingerprint.

  • Cite this