Statistical learning of shape-conjunctions

(Higher) order from chaos

Richard N. Aslin, J. Fiser

Research output: Contribution to journalArticle

Abstract

Learning new visual features involves the encoding of local spatial correlations from the statistics of images. Previously, we showed that human observers can learn the spatial configuration of shape-pairs embedded within multiple exemplars of complex displays. Passive observation of several dozen exemplars was sufficient for learning both single-shape frequency and higher-order (conditional probability) information about shape-pairs in the displays. In the present study, these same 12 simple shapes were grouped into four 3-element base-triplets, each with a specific I- or V-shaped spatial arrangement. During the learning phase, subjects passively viewed displays (2 sec each) in which two of the four base-triplets were pseudorandomly arranged in a 5 × 5 grid. These two base-triplets created cross-triplet shape-pairs that were superficially indistinguishable from base-triplet shape-pairs. Some of these cross-triplet shape-pairs had the same probability of occurrence as some base-triplet shape-pairs. However, all four of the base-triplets were more predictable (they had higher conditional probabilities) than any non-base-triplets. After the learning phase, subjects were unable to discriminate cross-triplet shape-pairs from base-triplet shape-pairs [t(20)=1.18, n.s.], but they were able to discriminate base-triplets from non-base-triplets [t(20)=4.86, p<.001]. These results replicate our earlier findings by showing that subjects can learn higher-order spatial statistics across multiple images. More importantly, these results demonstrate that the statistically based coherence of scenes can operate on at least triplets of shapes which define a coherent object configuration, and that triplet statistics are not necessarily bootstrapped from pair-wise statistics.

Original languageEnglish
JournalJournal of Vision
Volume1
Issue number3
DOIs
Publication statusPublished - 2001

Fingerprint

Learning
Base Pairing
Observation

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Statistical learning of shape-conjunctions : (Higher) order from chaos. / Aslin, Richard N.; Fiser, J.

In: Journal of Vision, Vol. 1, No. 3, 2001.

Research output: Contribution to journalArticle

@article{121bea824de14221af55d3ba32c93008,
title = "Statistical learning of shape-conjunctions: (Higher) order from chaos",
abstract = "Learning new visual features involves the encoding of local spatial correlations from the statistics of images. Previously, we showed that human observers can learn the spatial configuration of shape-pairs embedded within multiple exemplars of complex displays. Passive observation of several dozen exemplars was sufficient for learning both single-shape frequency and higher-order (conditional probability) information about shape-pairs in the displays. In the present study, these same 12 simple shapes were grouped into four 3-element base-triplets, each with a specific I- or V-shaped spatial arrangement. During the learning phase, subjects passively viewed displays (2 sec each) in which two of the four base-triplets were pseudorandomly arranged in a 5 × 5 grid. These two base-triplets created cross-triplet shape-pairs that were superficially indistinguishable from base-triplet shape-pairs. Some of these cross-triplet shape-pairs had the same probability of occurrence as some base-triplet shape-pairs. However, all four of the base-triplets were more predictable (they had higher conditional probabilities) than any non-base-triplets. After the learning phase, subjects were unable to discriminate cross-triplet shape-pairs from base-triplet shape-pairs [t(20)=1.18, n.s.], but they were able to discriminate base-triplets from non-base-triplets [t(20)=4.86, p<.001]. These results replicate our earlier findings by showing that subjects can learn higher-order spatial statistics across multiple images. More importantly, these results demonstrate that the statistically based coherence of scenes can operate on at least triplets of shapes which define a coherent object configuration, and that triplet statistics are not necessarily bootstrapped from pair-wise statistics.",
author = "Aslin, {Richard N.} and J. Fiser",
year = "2001",
doi = "10.1167/1.3.468",
language = "English",
volume = "1",
journal = "Journal of Vision",
issn = "1534-7362",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "3",

}

TY - JOUR

T1 - Statistical learning of shape-conjunctions

T2 - (Higher) order from chaos

AU - Aslin, Richard N.

AU - Fiser, J.

PY - 2001

Y1 - 2001

N2 - Learning new visual features involves the encoding of local spatial correlations from the statistics of images. Previously, we showed that human observers can learn the spatial configuration of shape-pairs embedded within multiple exemplars of complex displays. Passive observation of several dozen exemplars was sufficient for learning both single-shape frequency and higher-order (conditional probability) information about shape-pairs in the displays. In the present study, these same 12 simple shapes were grouped into four 3-element base-triplets, each with a specific I- or V-shaped spatial arrangement. During the learning phase, subjects passively viewed displays (2 sec each) in which two of the four base-triplets were pseudorandomly arranged in a 5 × 5 grid. These two base-triplets created cross-triplet shape-pairs that were superficially indistinguishable from base-triplet shape-pairs. Some of these cross-triplet shape-pairs had the same probability of occurrence as some base-triplet shape-pairs. However, all four of the base-triplets were more predictable (they had higher conditional probabilities) than any non-base-triplets. After the learning phase, subjects were unable to discriminate cross-triplet shape-pairs from base-triplet shape-pairs [t(20)=1.18, n.s.], but they were able to discriminate base-triplets from non-base-triplets [t(20)=4.86, p<.001]. These results replicate our earlier findings by showing that subjects can learn higher-order spatial statistics across multiple images. More importantly, these results demonstrate that the statistically based coherence of scenes can operate on at least triplets of shapes which define a coherent object configuration, and that triplet statistics are not necessarily bootstrapped from pair-wise statistics.

AB - Learning new visual features involves the encoding of local spatial correlations from the statistics of images. Previously, we showed that human observers can learn the spatial configuration of shape-pairs embedded within multiple exemplars of complex displays. Passive observation of several dozen exemplars was sufficient for learning both single-shape frequency and higher-order (conditional probability) information about shape-pairs in the displays. In the present study, these same 12 simple shapes were grouped into four 3-element base-triplets, each with a specific I- or V-shaped spatial arrangement. During the learning phase, subjects passively viewed displays (2 sec each) in which two of the four base-triplets were pseudorandomly arranged in a 5 × 5 grid. These two base-triplets created cross-triplet shape-pairs that were superficially indistinguishable from base-triplet shape-pairs. Some of these cross-triplet shape-pairs had the same probability of occurrence as some base-triplet shape-pairs. However, all four of the base-triplets were more predictable (they had higher conditional probabilities) than any non-base-triplets. After the learning phase, subjects were unable to discriminate cross-triplet shape-pairs from base-triplet shape-pairs [t(20)=1.18, n.s.], but they were able to discriminate base-triplets from non-base-triplets [t(20)=4.86, p<.001]. These results replicate our earlier findings by showing that subjects can learn higher-order spatial statistics across multiple images. More importantly, these results demonstrate that the statistically based coherence of scenes can operate on at least triplets of shapes which define a coherent object configuration, and that triplet statistics are not necessarily bootstrapped from pair-wise statistics.

UR - http://www.scopus.com/inward/record.url?scp=4143073698&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4143073698&partnerID=8YFLogxK

U2 - 10.1167/1.3.468

DO - 10.1167/1.3.468

M3 - Article

VL - 1

JO - Journal of Vision

JF - Journal of Vision

SN - 1534-7362

IS - 3

ER -