Stable isotope studies and processes of carbonate formation in Hungarian alkali basalts and lamprophyres: Evolution of magmatic fluids and magma-sediment interactions

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magmatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1) Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.

Original languageEnglish
Pages (from-to)335-349
Number of pages15
JournalLithos
Volume37
Issue number4
DOIs
Publication statusPublished - May 1996

Fingerprint

alkali basalt
Carbonates
Alkalies
Isotopes
Sediments
stable isotope
magma
carbonate
Fluids
fluid
sediment
Degassing
degassing
lamprophyre
Rocks
Crystallization
crystallization
basalt
Oxygen Isotopes
isotope

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

@article{0119118f8a19413fac0af121468c53f2,
title = "Stable isotope studies and processes of carbonate formation in Hungarian alkali basalts and lamprophyres: Evolution of magmatic fluids and magma-sediment interactions",
abstract = "Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magmatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1) Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.",
author = "A. Dem{\'e}ny and S. Harangi",
year = "1996",
month = "5",
doi = "10.1016/0024-4937(95)00029-1",
language = "English",
volume = "37",
pages = "335--349",
journal = "Lithos",
issn = "0024-4937",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - Stable isotope studies and processes of carbonate formation in Hungarian alkali basalts and lamprophyres

T2 - Evolution of magmatic fluids and magma-sediment interactions

AU - Demény, A.

AU - Harangi, S.

PY - 1996/5

Y1 - 1996/5

N2 - Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magmatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1) Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.

AB - Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magmatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1) Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.

UR - http://www.scopus.com/inward/record.url?scp=0029729310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029729310&partnerID=8YFLogxK

U2 - 10.1016/0024-4937(95)00029-1

DO - 10.1016/0024-4937(95)00029-1

M3 - Article

AN - SCOPUS:0029729310

VL - 37

SP - 335

EP - 349

JO - Lithos

JF - Lithos

SN - 0024-4937

IS - 4

ER -