Stability in possibilistic linear programming with continuous fuzzy number parameters

Mario Fedrizzi, R. Fullér

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

We prove that possibilistic linear programming problems (introduced by Buckley in [2]) with continuous fuzzy number parameters are well-posed, i.e. small changes of the membership function of the parameters may cause only a small deviation in the possibilistic distribution of the objective function.

Original languageEnglish
Pages (from-to)187-191
Number of pages5
JournalFuzzy Sets and Systems
Volume47
Issue number2
DOIs
Publication statusPublished - Apr 27 1992

Fingerprint

Membership functions
Fuzzy numbers
Linear programming
Small Deviations
Membership Function
Objective function
Membership function
Deviation

Keywords

  • Fuzzy linear programming
  • fuzzy numbers
  • possibility distributions

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Information Systems and Management
  • Statistics, Probability and Uncertainty
  • Electrical and Electronic Engineering
  • Statistics and Probability

Cite this

Stability in possibilistic linear programming with continuous fuzzy number parameters. / Fedrizzi, Mario; Fullér, R.

In: Fuzzy Sets and Systems, Vol. 47, No. 2, 27.04.1992, p. 187-191.

Research output: Contribution to journalArticle

@article{2dd8f16c06ab436990e3f7bbd09cc9df,
title = "Stability in possibilistic linear programming with continuous fuzzy number parameters",
abstract = "We prove that possibilistic linear programming problems (introduced by Buckley in [2]) with continuous fuzzy number parameters are well-posed, i.e. small changes of the membership function of the parameters may cause only a small deviation in the possibilistic distribution of the objective function.",
keywords = "Fuzzy linear programming, fuzzy numbers, possibility distributions",
author = "Mario Fedrizzi and R. Full{\'e}r",
year = "1992",
month = "4",
day = "27",
doi = "10.1016/0165-0114(92)90177-6",
language = "English",
volume = "47",
pages = "187--191",
journal = "Fuzzy Sets and Systems",
issn = "0165-0114",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Stability in possibilistic linear programming with continuous fuzzy number parameters

AU - Fedrizzi, Mario

AU - Fullér, R.

PY - 1992/4/27

Y1 - 1992/4/27

N2 - We prove that possibilistic linear programming problems (introduced by Buckley in [2]) with continuous fuzzy number parameters are well-posed, i.e. small changes of the membership function of the parameters may cause only a small deviation in the possibilistic distribution of the objective function.

AB - We prove that possibilistic linear programming problems (introduced by Buckley in [2]) with continuous fuzzy number parameters are well-posed, i.e. small changes of the membership function of the parameters may cause only a small deviation in the possibilistic distribution of the objective function.

KW - Fuzzy linear programming

KW - fuzzy numbers

KW - possibility distributions

UR - http://www.scopus.com/inward/record.url?scp=38249012062&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249012062&partnerID=8YFLogxK

U2 - 10.1016/0165-0114(92)90177-6

DO - 10.1016/0165-0114(92)90177-6

M3 - Article

AN - SCOPUS:38249012062

VL - 47

SP - 187

EP - 191

JO - Fuzzy Sets and Systems

JF - Fuzzy Sets and Systems

SN - 0165-0114

IS - 2

ER -